INF05010 - Algoritmos avancados
Notas de aula

Marcus Ritt
mrpritt@inf.ufrgs.br

7 de Agosto de 2013

Universidade Federal do Rio Grande do Sul
Instituto de Informética
Departamento de Informatica Tedrica

Versao 4736 do 2013-08-07, compilada em 7 de Agosto de 2013. Obra esta li-
cenciada sob uma Licenga Creative Commons (Atribuigao—Uso Nao-Comercial—
Nao a obras derivadas 3.0 Brasil).

iii

http://creativecommons.org/licenses/by-nc-nd/3.0/br

Conteudo

1.

2.

Algoritmos em grafos

1.1. Representacao de grafos . . .

1.2. Caminhos e ciclos Eulerianos

1.3. Filas de prioridade e heaps .
1.3.1. Heaps binarios
1.3.2. Heaps binomiais . . .
1.3.3. Heaps Fibonacci . . .
1.3.4. Rank-pairing heaps . .

1.3.5. Arvores de van Emde Boas oo

1.3.6. Topicos
1.3.7. Exercicios
1.4. Fluxosemredes.

1.4.1. Algoritmo de Ford-Fulkerson
1.4.2. O algoritmo de Edmonds-Karp
1.4.3. O algoritmo “caminho mais gordo” (“fattest path”)

1.4.4. O algoritmo push-relabel

1.4.5. Variagoes do problema
1.4.6. Aplicagoes

1.4.7. Outros problemas de fluxo

1.4.8. Exercicios
1.5. Emparelhamentos
1.5.1. Aplicagoes
1.5.2. Grafos bi-partidos . .

1.5.3. Emparelhamentos em grafos nao-bipartidos

1.5.4. Exercicios

Tabelas hash
2.1. Hashing com listas encadeadas

2.2. Hashing com enderecamento aberto.

2.3. Cuco hashing
2.4. Filtros de Bloom

Algoritmos de aproximacao
3.1. Problemas, classes e redugoes

79
79
83
85
87

89
89

Contetido

3.2. Medidas de qualidade 0L
3.3. Técnicas de aproximagao «o
3.3.1. Algoritmos gulosos
3.3.2. Aproximacoes com randomizacao
3.4. Esquemas de aproximagaoo
3.5. Aproximando o problema da arvore de Steiner minima
3.6. Aproximandoo PCV
3.7. Aproximando problemas de cortes L.
3.8. Aproximando empacotamento unidimensional
3.8.1. Um esquema de aproximacao assintético para min-EU .
3.9. Aproximando problemas de sequénciamento
3.9.1. Um esquema de aproximagao para P || Cpax - - - - . . .
3.10. Exercicios Lo

. Algoritmos randomizados

4.1. Teoria de complexidade
4.1.1. Amplificacao de probabilidades
4.1.2. Relagao entre asclasses

4.2. Selecaoo

4.3. Corte minimo

4.4. Teste de primalidade

4.5. Exercicios Lo

. Complexidade e algoritmos parametrizados

. Material auxiliar
A1 Algoritmos . . . oL

. Técnicas para a analise de algoritmos

1. Algoritmos em grafos

1.1. Representacao de grafos

Um grafo pode ser representado diretamente de acordo com a sua defini¢ao
por n estruturas que representam os vértices, m estruturas que representam
os arcos e ponteiros entre as estruturas. Um vértice possui ponteiros para todo
arco incidente sainte ou entrante, e um arco possui ponteiros para o inicio e
término. A representagio direta possui varias desvantagens. Por exemplo nao
temos acesso direto aos vértices para inserir um arco.

Duas representagoes simples sao listas (ou vertores) ndo-ordenadas de vértices
ou arestas. Uma outra representagdo simples de um grafo G com n vértices é
uma matriz de adjacéncia M = (my;) € B™*™. Para vértices u,v o elemento
myuy = 1 caso existe uma arco entre u e v. Para representar grafos nao-
direcionados mantemos My, = My, i.e., M é simétrico. A representacao
permite um teste de adjacéncia em O(1). Percorrer todos vizinhos de um
dado vértice v custa O(n). O custo alto de espaco de @(n?) restringe o uso
de uma matriz de adjacéncia para grafos pequenos'.

Uma representacao mais eficiente é por listas ou vetores de adjacéncia. Neste
caso armazenamos para cada vértice os vizinhos em uma lista ou um vetor. As
listas ou vetores mesmos podem ser armazenados em uma lista ou um vetor
global. Com isso a representagdo ocupa espaco @(n + m) para m arestas.
Uma escolha comum é um vetor de vértices que armazena listas de vizinhos.
Esse estrutura permite uma insercao e delecao simples de arcos. Para facili-
tar a delecao de um vértice em grafos nao-direcionados, podemos armazenar
junto com o vizinho u do vértice v a posicdo do vizinho v do vértice u. A
representacao dos vizinhos por vetores é mais eficiente, e por isso preferivel
caso a estrutura do grafo é estético [29, 34].

Caso escolhemos armazenar os vértices em uma lista dupla, que armazena uma
lista dupla de vizinhos, em que os vizinhos sao representados por posicoes da
primeira lista, obtemos uma lista dupla de arcos (ingl. doubly connected arc
list, DCAL). Essa estrutura permite uma insergao e remogao tanto de vértices
quanto de arcos.

Supde que V = [n]. Uma outra representacdo compacta e eficiente conhecido
como forward star para grafos estaticos usa um vetor de arcos a,...,Qm.
Mantemos a lista de arestas ordenado pelo comego do arco. Uma permutacao o

1 Ainda mais espaca consuma uma matriz de incidéncia entre vértices e arestas em B™X™.

1. Algoritmos em grafos

Tabela 1.1.: Operacoes tipicas em grafos.

Lista de Matriz de Lista de
Operacao arestas vértices adjacéncia adjacéncia
Inserir aresta o(1) OMm+m) o(1) O(1) ou O(n)

Remover aresta O(m) O(n+m) o(1) O(n)
Inserir vértice o) om 0(n?) o(m

Remover vértice O(m) O(Mm+m) 0(n?) O(n+m)
Teste uv € E O(m) O(n+m) o(1) 0(A)
Percorrer vizinhos O(m) o(A) O(n) 0(A)
Grau de um vértice O(m) o(A) O(n) o(1)

nos dé as arestas em ordem do término. (O uso de uma permutacao serve para
reduzir o consumo de memdria.) Para percorrer eficientemente os vizinhos
de um vértice armazenamos o indice s, do primeiro arco sainte na lista de
arestas ordenado pelo comego e o indice e, do primeiro arco entrante na lista
de arestas ordenado pelo término com sp4+1 = en4+1 = m+ 1 por definicao.

Com isso temos N*(v) ={as,,...,0as, ,,—1} com 8} = sy 11 —sy, e N7 (v) =
{Ag(ey)y-+vyQofey, —1)) com 8, = e,41 —ey. A representacao precisa espaco
O(n+m).

A tabela 1.1 compara a complexidade de operagdes tipicas nas diferentes re-
presentacoes.

1.2. Caminhos e ciclos Eulerianos

Um caminho Euleriano passa por toda arestas de grafo exatamente uma vez.
Um caminho Euleriano fechado é um ciclo Euleriano. Um grafo é Fuleriano
caso ele possui um ciclo Euleriano que passa por cada vértice (pelo menos
uma vez).

Proposicao 1.1
Uma grafo nao-direcionado G = (V,E) é Euleriano sse G é conectado e cada
vértice tem grau par.

Prova. Por indugao sobre o nimero de arestas. A base da indugdao é um
grafo com um vértice e nenhuma aresta que satisfaz a proposicao. Supoe que
os grafos com < m arestas satisfazem a proposicao e temos um grafo G com
m+ 1 arestas. Comega por um vértice v arbitrario e procura um caminho que
nunca passa duas vezes por uma aresta até voltar para v. Isso sempre é possivel
porque o grau de cada vértice é par: entrando num vértice sempre podemos
sair. Removendo este caminho do grafo, obtemos uma cole¢ao de componentes

03O Ui Wi+

el
N = O O

1.2. Caminhos e ciclos Eulerianos

conectados com menos que m arestas, e pela hipétese da indugao existem ciclos
Eulerianos em cada componente. Podemos obter um ciclo Euleriano para o
grafo original pela concatengad desses ciclos Eulerianos. |
Pela prova temos o seguinte algoritmo com complexidade O(|E|) para encontrar
um ciclo Euleriano na componente de G = (V, E) que contém v € V:

Euler (G=(V,E),veV) =
if EEO return v
procura um caminho comegando em v
sem repetir arestas voltando para v
seja v=vi,Vv2,...,V, =V esse caminho
remove as arestas Viva, Vavi, ..., vp_1vnp de G
para obter G;
return Euler(Gi,v1) + Euler(Go,v;) + -+ - + Euler(Gn_1,nMvn_1) +vn
// Usamos + para concatena¢ao de caminhos.
// Gi € Gi_1 com as arestas do
// caminho Euler(Gi_1,vi—1) remowvidos, i.e
// Gi=(V,E(Gi_1) \ E(Euler(Gi_1,vi_1))

1. Algoritmos em grafos

1.3. Filas de prioridade e heaps

Uma fila de prioridade mantem um conjunto de chaves com prioridades de
forma que a atualizar prioridades e acessar o elemento de menor prioridade é
eficiente. Ela possui aplicagoes em algoritmos para calcular drvores geradores
minimas, caminhos mais curtos de um vértice para todos outros (algoritmo
de Dijkstra) e em algoritmos de ordenagao (heapsort).

Exemplo 1.1
Arvore geradora minima através do algoritmo de Prim.

Algoritmo 1.1 (Arvore geradora minima)
Entrada Um grafo conexo nao-orientado ponderado G = (V, E, ¢)

Saida Uma arvore T C E de menor custo total.

1 V':i={vg} para um vo €V

2 T:=0

3 while V' #V do

4 escolhe e={u,v} com custo minimo

5 entre V' e VAV’ (com ueV/ veV\V')
6 V' =V U{v}

7 T:=TU{e}

8

end while

Algoritmo 1.2 (Prim refinado)
Implementagao mais concreta:

1 T:=0

2 for ueV\{v} do

3 if ue N(v) then

4 value(u) := cyuy

5 pred(u) :=v

6 else

7 value(u) := oo

8 end if

9 insert(Q, (value(u),u)) { pares (chave,elemento) }

10 end for
11 while Q #0 do
12 v := deletemin(Q)

1.3. Filas de prioridade e heaps

13 T:=T U{pred(v)v}
14 for ue N(v) do

15 if ueQ e cyy < value(u) then
16 value(u) = cuy

17 pred(u) :=v

18 update(Q, 1, Cyy)

19 end if

20 end for
21 end while

Custo? n X insert + n x deletemin + m x update.

O

Observagao 1.1

Implementacdo com vetor de distincias: insert = O(1)2, deletemin = O(n),
update = O(1), e temos custo O(n +n? +m) = O(n? +m). Isso é assintoti-
camente 6timo para grafos densos, i.e. m = Q(n?). O

Observagao 1.2
Implementagao com lista ordenada: insert = O(n), deletemin = O(1), update =
O(n), e temos custo O(n? + n+ mn) = O(mn)?. O

Observagao 1.3

Implementacao com uma lista de v/n blocos de v/n elementos, insert, delete-
min e update podem ser implementados em tempo O(+/1), logo o algoritmo
de Prim e de Dijkstra tem complexidade O(m4/n). O

Exemplo 1.2
Caminhos mais curtos com o algoritmo de Dijkstra

Algoritmo 1.3 (Dijkstra)
Entrada Grafo nao-direcionado G = (V,E) com pesos c. > 0 nas arestas
e € E, e um vértice s € V.

Saida A distancia minima d, entre s e cada vértice v € V.

1 ds :=0;d, := 00, Vv € V\ {s}
2 visited(v) := false, Vv € V

2Com chaves compactas [1,n].
3Na hipétese razodvel que m > n

1. Algoritmos em grafos

3 Q:=0

4 insert(Q, (s,0))

5 while Q #0 do

6 v := deletemin(Q)
7 visited(v) = true
8 for ue N(v) do

9 if not visited(u) then
10 if dy = o then
11 dy, :=d, +dyy
12 insert(Q, (u,dy))
13 else
14 dy := min(d, + dyu, dy)
15 update(Q, (u, d,,))
16 end if
17 end if
18 end for

19 end while

A fila de prioridade contém pares de vértices e distancias.

Proposicao 1.2
O algoritmo de Dijkstra possui complexidade

O(n) +n x deletemin + n x insert + m x update.

Prova. O pré-processamento (1-3) tem custo O(n). O lago principal é
dominado por no méaximo n operagoes insert, n operagoes deletemin, e m
operagoes update. A complexidade concreta depende da implementacao des-
ses operacoes. |

Proposigao 1.3
O algoritmo de Dijkstra é correto.

Prova. Seja dist(s,x) a menor distancia entre s e x. Provaremos por indugao
que para cada vértice v selecionado na linha 6 do algoritmo d, = dist(s,x).
Como base isso é correto parav = s. Sejav # s um vértice selecionado na linha
6, e supoe que existe um caminho P =s---xy---v de comprimento menor que
dy, tal que y é o primeiro vértice que néo foi processado (i.e. selecionado na

1.3. Filas de prioridade e heaps

linha 6) ainda. (E possivel que y = v.) Sabemos que

dy < dyx + dyy porque x ja foi processado
= dist (s, x) + dxy pela hipétese dy = dist(s, x)
< d(P) dp(s,x) > dist(s,x) e P passa por xy
< dy, pela hipétese

uma contradigdo com a minimalidade do elemento extraido na linha 6. (Notagao:
d(P): distancia total do caminho P; dp(s,x): distancia entre s e x no caminho
P) - o

Observagao 1.4

Podemos ordenar n elementos usando um heap com mn operagoes “insert”
e n operacoes “deletemin”. Pelo limite de Q(nlogn) para ordenagao via
comparagao, podemos concluir que o custo de “insert” mais “deletemin” é
Q(logn). Portanto, pelo menos uma das operacoes é Q(logn). %

1.3.1. Heaps binarios

Teorema 1.1 (Williams [41])

Uma fila de prioridade pode ser implementado com custo insert = O(logn),
deletemin = O(logn), update = O(logn). Portanto, uma &rvore geradora
minima pode ser calculado em tempo O(nlogn + mlogn).

Um heap é uma arvore com chaves nos vértices que satisfazem um critério de
ordenagao.

e min-heap: as chaves dos filhos sao maior ou igual que a chave do pai;
e maz-heap: as chaves dos filhos sdo menor ou igual que a chave do pai.

Um heap bindrio é um heap em que cada vértice possui no méaximo dois filhos.
Implementaremos uma fila de prioridade com um heap binédrio completo. Um
heap completo fica organizado de forma que possui folhas somente no tltimo
nivel, da esquerda para direita. Isso garante uma altura de O(logn).

—_

S © 00 O Ui W~

1. Algoritmos em grafos

Positivo: Achar a chave com valor minimo (operacdo findmin) custa O(1).
Como implementar a inser¢ao? Idéia: Colocar na tltima posicao e restabelecer
a propriedade do min-heap, caso a chave é menor que a do pai.

insert (H,c) :=
insere ¢ na ultima posigao p
heapify up(H,p)

heapify up(H,p) :=
if root(p) return
if key(parent(p))>key(p) then
swap (key (parent (p)),key(p))
heapify up(H,parent(p))
end if

Lema 1.1
Seja T um min-heap. Decremente a chave do né p. Apéds heapify-up(T, P)
temos novamente um min-heap. A operacao custa O(logn).

Prova. Por indugao sobre a profundidade k de p. Caso k = 1: p ¢ a raiz,
apos o decremento ja temos um min-heap e heapify-up nao altera ele. Caso
k > 1: Seja ¢ a nova chave de p e d a chave de parent(p). Caso d < ¢ ja temos
um min-heap e heapify-up néo altera ele. Caso d > ¢ heapify-up troca c e
d e chama heapify-up(T,parent(p)) recursivamente. Podemos separar a troca
em dois passos: (i) copia d para p. (ii) copia ¢ para parent(p). Apds passo
(i) temos um min-heap T’ e passo (ii) diminui a chave de parent(p) e como
a profundidade de parent(p) é k — 1 obtemos um min-heap apés da chamada
recursiva, pela hipétese da inducgao.

Como a profundidade de T é O(logn), o nimero de chamadas recursivas
também, e como cada chamada tem complexidade O(1), heapify-up tem com-
plexidade O(logn). |
Como remover? A idéia bésica é a mesma: troca a chave com o menor filho.
Para manter o heap completo, colocaremos primeiro a chave da tltima posi¢ao
na posig¢ao do elemento removido.

delete (H,p):=

10

00 J O Ui W N

11
12
13
14
15
16
17
18
19

1.3. Filas de prioridade e heaps

troca ultima posicao com p
heapify down(H,p)

heapify down(H,p):=
if (p nao possui filhos) return
if (p possui um filho) then
if key(left (p))<key(p)) then swap(key(left(p)),key(p))
end if
{ p possui dois filhos }
if key(p)>key(left(p)) or key(
if (key(left (p))<key(right (p
swap (key (left (p)), key(p))
heapify down(H,left (p))
else
swap (key (right (p)) ., key(p))
heapify down(H,right (p))
end if
end if

p)>key(right (p)) then
)) then

Lema 1.2
Seja T um min-heap. Incremente a chave do né p. Apéds heapify-down(T, p)
temos novamente um min-heap. A operacéo custa O(logn).

Prova. Por indugédo sobre a altura k de p. Caso k =1, p é uma folha e apds o
incremento ja temos um min-heap e heapify-down néao altera ele. Caso k > 1:
Seja ¢ a nova chave de p e d a chave do menor filho f. Caso ¢ < d ja temos
um min-heap e heapify-down nao altera ele. Caso ¢ > d heapify-down troca c
e d e chama heapify-down(T,f) recursivamente. Podemos separar a troca em
dois passos: (i) copia d para p. (ii) copia ¢ para f. Apds passo (i) temos um
min-heap T’ e passo (ii) aumenta a chave de f e como a altura de f é k— 1,
obtemos um min-heap apds da chamada recursiva, pela hipdtese da inducao.
Como a altura de T é O(logn) o nimero de chamadas recursivas também, e
como a cada chamada tem complexidade O(1), heapify-up tem complexidade
O(logmn). []
Ultima operacao: atualizar a chave.

11

OO U W N+

S T W N =

1. Algoritmos em grafos

update (H,p,v) :=
if v<key(p) then

key (p):=v

heapify up(H,p)
else

key (p):=v

heapify down(H,p)
end if

Sobre a implementacdo Uma drvore bindria completa pode ser armazenado
em um vetor v que contém as chaves. Um pontador p a um elemento é
simplesmente o indice no vetor. Caso o vetor contém n elementos e possui
indices a partir de 0 podemos definir

root (p) := return p=0
parent (p) := return |(p—1)/2]
key(p) := return v[p]

left (p) := return 2p+1
right (p) := return 2p+2
numchildren (p) := return max(min(n — left(p),2),0)

Outras observagoes:

e Para chamar update, temos que conhecer a posi¢cao do elemento no heap.
Para um conjunto de chaves compactos [0, n) isso pode ser implementado
usando um vetor pos, tal que pos|c] é o indice da chave ¢ no heap.

e A fila de prioridade ndo possui teste u € Q (linha 15 do algoritmo 1.2)
eficiente. O teste pode ser implementado usando um vetor visited, tal
que visited[u] sse u € Q.

1.3.2. Heaps binomiais

Um heap binomial é um colecao de drvores binomiais que satisfazem a or-
denacdo de um heap. A arvore binomial By consiste de um tnico vértice. A
arvore binomial B; possui uma raiz com filhos Bg,...,Bi_1. O posto de By é
k. Um heap binomial contém no maximo uma arvore binomial de cada posto.

12

1.3. Filas de prioridade e heaps

Bo By B2 B; By
° :a/.\: W
Lema 1.3

Uma &arvore binomial tem as seguintes caracteristicas:
1. By, possui 2™ vértices, 2"~ folhas (para n > 0), e tem altura n + 1.

2. O nivel k de By, (a raiz tem nivel 0) tem (}) vértices. (Isso explica o
nome.)

Prova. Exercicio.]
Observagao 1.5

Podemos combinar dois B; obtendo um B; 1 e mantendo a ordenagao do heap:
Escolhe a arvore com menor chave na raiz, e torna a outra filho da primeira.
Chamaremos essa operacao “link”. Ela tem custo O(1) (veja observagoes sobre
a implementagao).

O

Observagao 1.6

Um B; possui 2} vértices. Um heap com n chaves consiste em O(logn) drvores.
Isso permite juntar dois heaps binomiais em tempo O(logn). A operagao é
semelhante & soma de dois nimeros bindrios com “carry”. Comega juntar os
Bo. Caso tem zero, continua, case tem um, inclui no heap resultante. Caso
tem dois o heap resultante nao recebe um By. Define como “carry” o link dos
dois Bg’s. Continua com os B;. Sem tem zero ou um ou dois, procede como
no caso dos By. Caso tem trés, incluindo o “carry”, inclui um no resultado, e
define como “carry” o link dos dois restantes. Continue desse forma com os
restantes drvores. Para heaps hy, h, chamaremos essa operacao meld(hy,h;).

O

13

1. Algoritmos em grafos

Com a operagao meld, podemos definir as seguintes operacgoes:
e makeheap(c): Retorne um By com chave c¢. Custo: O(1).
e insert(h,c): meld(h,makeheap(c)). Custo: O(logn).
e getmin(h): Mantendo um link para a drvore com o menor custo: O(1).

o deletemin(h): Seja By a arvore com o menor chave. Remove a raiz.
Define dois heaps: h; é h sem By, h, consiste dos filhos de By, i.e.
Bo,...,Bx—1. Retorne meld(hj,h;). Custo: O(logn).

e updatekey(h,p,c): Como no caso do heap bindrio completo com custo
O(logn).

e delete(h,c): decreasekey(h,c,—o0); deletemin(h)

Em comparagao com um heap binario completo ganhamos nada no caso pessi-
mista. De fato, a operacédo insert possui complexidade pessimista O(1) amor-
tizada. Um insert individual pode ter custo O(logn). Do outro lado, isso
acontece raramente. Uma andlise amortizada mostra que em média sobre
uma série de operagdes, um insert s6 custa O(1). Observe que isso nao é uma
analise da complexidade média, mas uma analise da complexidade pessimista
de uma série de operacoes.

Analise amortizada

Exemplo 1.3

Temos um contador bindrio com k bits e queremos contar de 0 até 2% — 1.
Anélise “tradicional”: um incremento tem complexidade O(k), porque no caso
pior temos que alterar k bits. Portanto todos incrementos custam O(k2%).
Aniglise amortizada: “Poupamos” operagoes extras nos incrementos simples,
para “gasta-las” nos incrementos caros. Concretamente, setando um bit, gas-
tamos duas operagoes, uma para setar, outra seria “poupada”. Incremen-
tando, usaremos as operagoes “poupadas” para zerar bits. Desta forma, um
incremento custa O(1) e temos custo total O(2%).

Uma outra forma da analise amortizada é através uma fun¢do potencial @,
que associa a cada estado de uma estrutura de dados um valor positivo (a
“poupanga”). O custo amortizado de uma operacdo que transforma uma
estrutura e; em uma estrutura e; e ¢ — @(e7) + @(e2), com ¢ o custo de
operacdo. No exemplo do contador, podemos usar como @(i) o nidmero de
bits na representagao binario de i. Agora, se temos um estado e;

~—— ~—
p bits um g bits um

14

0O Ui Wi+

1.3. Filas de prioridade e heaps

com @(ey) =p+ q, o estado apés de um incremento é

00---01 ---
—_—
0 q

com @(ez) =1+ q. O incremento custa ¢ = p 4+ 1 operagdes e portanto o
custo amortizado é

c—pler) +@lea) =p+1—p—q+1+qg=2=0().
o

Resumindo: Dado um série de chamadas de uma operagao com custos 1, ..., Cn
o custo amortizado da operagao é)} ;_;,, ci/n. Caso temos m operagoes di-

3

ferentes, o custo amortizado da operagido que ocorre nos indices J] C [T, m] é
Zie] Cl/m

As somas podem ser dificeis de avaliar diretamente. Um método para simpli-
ficar o cédlculo do custo amortizado é o método potencial. Acha uma funcdo
potencial @ que atribui cada estrutura de dados antes da operagao i um va-
lor ndo-negativo @; > 0 e normaliza ela tal que @7 = 0. Atribui um custo
amortizado

ai =Ci — Qi + Qi1

a cada operacao. A soma dos custos nao ultrapassa os custos originais, porque

Zai:ZCi*@i+(Pi+1 :(Pn+1*<P1+ZCiZZCi

Portanto, podemos atribuir a cada tipo de operacao | C [1, m] o custo amorti-
zado Zie] ai/|J|. Em particular, se cada operagéo individual 1 €] tem custo
amortizado a; < F, o custo amortizado desse tipo de operagao é F.

Exemplo 1.4

Queremos implementar uma tabela dinamica para um ntmero desconhecido
de elementos. Uma estratégia é reserver espago para n elementos, manter a
ultima posigao livre p, e caso p > n alocara uma nova tabela de tamanho
maijor. Uma implementacao dessa ideia é

insert (x):=

if p>n then
aloca nova tabela de tamanho t= max{2n,1}
copia os elementos xi,1 <i<p para nova tabela
n:i=t

end if

Xp =X

p=p+1

15

1. Algoritmos em grafos

com valores iniciais n := 0 e p := 0. O custo de insert é O(1) caso existe ainda
espaco na tabela, mas O(n) no pior caso.

Uma andlise amortizada mostra que a complexidade amortizada de uma operacao
é O(1). Seja Cn o custo das linhas 3-5 e D o custo das linhas 7-8. Escolhe a
fungao potencial @(n) =2Cp — Dn. A funcdo ¢ é satisfaz os critérios de um
potencial, porque p > 1n/2, e inicialmente temos ¢(0) = 0. Com isso o custo
amortizado caso tem espago na tabela é

ai=ci—@(i-T1)+ (i)
=D—(2C(p—1)—Dn)+ (2Cp —Dn) = C+2C = O(1).

Caso temos que alocar uma nova tabela o custo é

ai=ci—e(i—1)+ei)=D+Cn—(2C(p—1)—Dn) + (2Cp — 2Dn)
=C+Dn+2C—Dn=0(1).

O

Custo amortizado do heap binomial Nosso potencial no caso do heap bi-
nomial é o numero de arvores no heap. O custo de getmin e updatekey nao
altera o potencial e por isso permanece o mesmo. makeheap cria uma arvore
que custa mais uma operagao, mas permanece O(1). deletemin pode criar
O(logn) édrvores novas, porque o heap contém no méximo um Bpogn que
tem O(logn) filhos, e permanece também com custo O(logn). Finalmente,
insert reduz o potencial para cada link no meld e portanto agora custa somente
O(1) amortizado, com o mesmo argumento que no exemplo 1.3.
Desvantagem: a complexidade (amortizada) assintética de calcular uma drvore
geradora minima permanece O(nlogn + mlogn).

Meld preguicosa Ao invés de reorganizar os dois heaps em um meld, pode-
mos simplesmente concatend-los em tempo O(1). Isso pode ser implementado
sem custo adicional nas outras operagoes. A tinica operagdo que nao tem com-
plexidade O(1) é deletemin. Agora temos uma colecdo de arvores binomiais
nao necessariamente de posto diferente. O deletemin reorganiza o heap, tal
que obtemos um heap binomial com arvores de posto tinico novamente. Para
isso, mantemos um vetor com as arvores de cada posto, inicialmente vazio.
Sequencialmente, cada drvore no heap, serd integrado nesse vetor, executando
operagoes link sé for necessario. O tempo amortizado de deletemin permanece
O(logn).

Usaremos um potencial ¢ que é o dobro do nimero de arvores. Supondo que
antes do deletemin temos t arvores e executamos | operagoes link, o custo

16

1.3. Filas de prioridade e heaps

amortizado é
(t+)—2t+2t—-1)=t—1L

Mas t — 1 é o nimero de drvores depois o deletemin, que é O(logn), porque
todas arvores possuem posto diferente.

Sobre a implementacdao Um forma eficiente de representar heaps binomiais,
é em forma de apontadores. Além das apontadores dos filhos para o os pais,
cada pai possui um apontador para um filho e os filhos sao organizados em
uma lista encadeada dupla. Mantemos uma lista encadeada dupla também
das raizes. Desta forma, a operacdo link pode ser implementada em O(1).

1.3.3. Heaps Fibonacci

Um heap Fibonacci é uma modificacao de um heap binomial, com uma operagao
decreasekey de custo O(1). Com isso, uma arvore geradora minima pode ser
calculada em tempo O(m+nlogn). Para conseguir decreasekey em O(1) nao
podemos mais usar heapify-up, porque heapify-up custa O(logn).

Primeira tentativa:

e delete(h,p): Corta p de h e executa um meld entre o resto de h e os filhos
de p. Uma alternativa é implementar delete(h,p) como decreasekey(h,p,—o0)
e deletemin(h).

e decreasekey(h,p): A ordenacdo do heap pode ser violada. Corta p é
execute um meld entre o resto de h e p.

Problema com isso: apds de uma série de operagoes delete ou decreasekey, a
arvore pode se tornar “esparso”, i.e. o numero de vértices nao é mais expo-
nencial no posto da arvore. A analise da complexidade das operacgbes como
deletemin depende desse fato para garantir que temos O(logn) arvores no
heap. Consequéncia: Temos que garantir, que uma arvore nao fica “podado”

17

0O O UL W N+

Nej

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1. Algoritmos em grafos

demais. Solugao: Permitiremos cada vértice perder no maximo dois filhos.
Caso o segundo filho é removido, cortaremos o préprio vértice também. Para
cuidar dos cortes, cada né mantém ainda um valor booleana que indica, se ja
foi cortado um filho. Observe que um corte pode levar a uma série de cortes
e por isso se chama de corte em cascatas (ingl. cascading cuts). Um corte
em cascata termina na pior hipdtese na raiz. A raiz é o tnico vértice em que
permitiremos cortar mais que um filho. Por isso ndo mantemos flag na raiz.

Implementacées Denotamos com h um heap, ¢ uma chave e p um elemento
do heap. minroot(h) é o elemento do heap que correspondo com a raiz da
chave minima, e cut(p) é uma marca que verdadeiro, se p ja perdeu um filho.

insert (h, c) :=
meld (makeheap (c))

getmin(h) :=
return minroot (h)

delete (h,p) :=
decreasekey (h,p,—o0)
deletemin (h)

meld (hy ,hy) =
h := lista com raizes de hy e hy (em O(1))
minroot (h) :=
if key(minroot(hy))<key(minroot(hz)) hy; else hy

decreasekey (h,p,c) :=
key(p):= ¢
if ¢ < key(minRoot(h))
minRoot (h) = p
if not root(p)
if key(parent(p))>key(p)
corta p e adiciona na lista de raizes de h
cut(p) := false
cascading cut (h,parent(p))

cascading cut(h,p) :=
{ p perdeu um filho }
if root(p)

return

18

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
33
54
95
56
o7
98
99
60
61
62
63
64

1.3. Filas de prioridade e heaps

if (not cut(p)) then

cut(p) := true
else
corta p e adiciona na lista de raizes de h
cut (p) := false
cascading cut(h,parent(p))
end if

deletemin (h) :=
remover minroot (h)
juntar as listas do resto de h e dos filhos de minroot(h)
{ reorganizar heap }
determina o posto mdximo M =M(n) de h
T ;= undefined para 0 <i<M
for toda raiz r do
remove v da lista de raizes
d := degree(r)
while (rq not undefined) do
r := link(r,7q)
T4 := undefined
d ;= d+1
end while
Tq ‘= T
end for
definir a lista de raizes pelas entradas definidas 7
determinar o novo minroot

link (h] ,hz) =
if (key(hi)<key(hz))
h := makechild (h; ,h;)

else

h := makechild (hy ,hy)
cut (hy) := false
cut (hy) := false
return h

Para concluir que a implementacao tem a complexidade desejada temos que
provar que as arvores com no méaximo um filho cortado nao ficam esparsos
demais e analisar o custo amortizado das operacoes.

19

1. Algoritmos em grafos

Custo amortizado Para anédlise usaremos um potencial de ¢yt + com sendo
t o nimero de arvores, m o nimero de vértices marcados e c1,c, constantes.
As operagoes makeheap, insert, getmin e meld (preguigoso) possuem comple-
xidade (real) O(1). Para decreasekey temos que considerar o caso em que o
corte em cascata remove mais que uma subarvore. Supondo que cortamos
n arvores, o numero de raizes é t + n apds dos cortes. Para todo corte em
cascata, a arvore cortada é desmarcada, logo temos no méximo m — (n — 1)
marcas depois. Portanto custo amortizado é

Oon)—(cit+com)+(c1(t+n)+c2(m—(n—1))) =con—(c2 —c1)n+cz

e com Cy — €1 > ¢ temos custo amortizado constante ¢, = O(1).
Com posto méaximo M, a operacao deletemin tem o custo real O(M +t), com
as seguintes contribuigoes

e Linha 43: O(M).

e Linhas 44-51: O(M + t) com t o niimero inicial de &drvores no heap. A
lista de raizes contém no méaximo as t arvores de h e mais M filhos da
raiz removida. O lago total nao pode executar mais que M+t operagoes
link, porque cada um reduz o nimero de raizes por um.

e Linhas 54-55: O(M).

Seja m o ntimero de marcas antes do deletemin e m’ o ntimero depois. Como
deletemin marca nenhum vértice, temos m’ < m. O ntimero de arvores t’
depois de deletemin satisfaz t’ < M porque deletemin garante que existe no
maximo uma arvore de cada posto. Portanto, o potencial depois de deletemin
e @' =cit+com’ <c¢iM + com, e o custo amortizado é

OM+1t)—(cit+com)+ @' <OM+1)—(c1t+com)+ (ctM +com)
= (co+c1)M + (co —cr)t

e com €7 > ¢ temos custo amortizado O(M).

Um limite para M Para provar que deletemin tem custo amortizado logn,
temos que provar que M = M(n) = O(logn). Esse fato segue da maneira
”cautelosa” com que cortamos vértices das arvores.

Lema 1.4
Seja p um vértice arbitrario de um heap Fibonacci. Considerando os filhos

na ordem temporal em que eles foram introduzidos, filho 1 possui pelo menos
i— 2 filhos.

20

1.3. Filas de prioridade e heaps

Prova. No instante em que o filho i foi introduzido, p estava com pelo menos
i—1 filhos. Portanto i estava com pelo menos i — 1 filhos também. Depois
filho 1 perdeu no maximo um filho, e portanto possui pelo menos i — 2 filhos.
|

Quais as menores arvores, que satisfazem esse critério?

Fo Fi R F3 F4
Lema 1.5

Cada subarvore com uma raiz p com k filhos possui pelo menos Fy, vértices.

Prova. Seja Sy o ndmero minimo de vértices para uma subérvore cuja raiz
possui k filhos. Sabemos que So =1, S; = 2. Define S , =S 7 =1. Com
isso obtemos para k > 1

Sy = Z Sx—2=Sk2+Sk3+--+5 2 =52+ S5 1.
0<i<k

Comparando Sx com os nuimeros Fibonacci

P k se0<k<1
kT Freoo +Fr1 sek>2
e observando que So = F2 e S; = F3 obtemos Sy = Fy,2. Usando que
Fp € ©(®™) com @ = (14 1/5)/2 (exercicio!) conclui a prova. [|

Corolario 1.1
O posto méximo de um heap Fibonacci com n elementos é O(logn).

Sobre a implementacdao A implementagio da arvore é a mesma que no caso
de heaps binomiais. Uma vantagem do heap Fibonacci é que podemos usar os
nds como ponteiros — lembre que a operacgao decreasekey precisa isso, porque
os heaps nao possuem uma operacao de busca eficiente. Isso é possivel, porque
sem heapify-up e heapify-down, os ponteiros mantem-se validos.

21

1. Algoritmos em grafos

1.3.4. Rank-pairing heaps

Haeupler, Sen e Tarjan [26] propdem um rank-pairing heap (um heap “em-
parelhando postos”) com as mesmas garantias de complexidade que um heap
Fibonacci e uma implementacao simplificada e mais eficiente na prética (ver
observagao 1.9).

Torneios Um torneio é uma representacao alternativa de heaps. Comegando
com todos elementos, vamos repetidamente comparar pares de elementos, e
promover o vencedor para o préximo nivel (Fig. 1.1(a)). Uma desvantagem
de representar torneios explicitamente é o espago para chaves redundantes.
Por exemplo, o campedo (i.e. 0 menor elemento) ocorre O(logn) vezes. A
figura 1.1(b) mostra uma representagdo sem chaves repetidas. Cada chave
é representado somente na comparacao mais alta que ele ganhou, as outras
comparagoes ficam vazias. A figura 1.1(c) mostra uma representagdo compacta
em forma de semi-drvore. Numa semi-arvore cada elemento possui um filho
ordenado (na figura o filha da esquerda) e um filho ndo-ordenado (na figura
o filho da direita). O filho ordenado é o perdedor da comparacao direta com
o elemento, enquanto o filho nao-ordenado é o perdedor da comparagao com
o irmao vazio. A raiz possui somente um filho ordenado.

Cada elemento de um torneio possui um posto. Por definicao, o posto de uma
folha é 0. Uma comparacao justa entre dois elementos do mesmo posto r
resulta num elemento com posto r + 1 no préximo nivel. Numa comparagao
injusta entre dois elementos com postos diferentes, o posto do vencedor é
definido pelo maior dois postos dos participantes (uma alternativa é que o
posto fica o mesmo). O posto de um elemento representa um limite inferior
do numero de elementos que perderam contra-lo:

Lema 1.6
Um torneio com campedo de posto k possui pelo menos 2% elementos.

Prova. Por indugdo. Caso um vencedor possui posto k temos duas possibi-
lidades: (i) foi o resultado de uma comparacdo justa, com dois participantes
com posto k — 1 e pela hipétese da inducio com pelo menos 2~ elementos,
tal que o vencedor ganhou contra pelo menos 2* elementos. (ii) foi resultado
de uma comparacao injusta. Neste caso um dos participantes possuiu posto k
e o vencedor novamente ganhou contra pelo menos 2% elementos. |

Cada comparacgao injusta torna o limite inferior dado pelo posto menos preciso.
Por isso uma regra na construgao de torneios é fazer o maior nimero de
comparacoes justas possiveis. A representacdo de um elemento de heap é
possui quatro campos para a chave (c), o posto (r), o filho ordenado (o) e o
filho nao-ordendo (u):

22

1.3. Filas de prioridade e heaps

Figura 1.1.: Representagoes de heaps.

23

O O U W N+

O W WWWWWWNNNNDNDNNDNNNRFERF ===
N U R WP O OO WNRFE OO0 Ok W~ OO

1. Algoritmos em grafos

def Node(c,r,0,u)

Podemos implementar as operacgoes de uma fila de prioridade (sem update ou

decreasekey) como segue:

{ compara duas arvores }
link(‘n ,tz) =
if t;.c < ty.c then
return makechild (t,t2)
else
return makechild (t,,t7)
end if

makechild (s, t) :=

(
S
S.0 (= ¢
(
S.T := 8
return s
setrank (t) :=
if t.o.r = t.u.r
t.r = t.o.r + 1
else
t.r = max(t.o.r,t.u.r)
end if

{ cria um heap com um tnico elemento com chave c }
make heap(c) := return Node(c,0 ,undefined ,undefined)

{ inserte chave c¢ no heap }

insert (h,c) := link (h,make heap(c))

{ unido de dois heaps }
meld(‘m ,hz) = link(h1 ,hz)

{ elemento minimo do heap }
getmin(h) := return h

{ delecao do elemento minimo do heap }

deletemin (h) :=
aloca array 1o...Th.o.r+1

24

38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
93
54
55
o6
o7
o8
59
60
61
62

link(

1.3. Filas de prioridade e heaps

Figura 1.2.: A operagdo “link” para semi-arvores no caso tj.c < tz.c.

t =h.o

while t not undefined do
t' = t.u
t.u := undefined
register (t,r)
t=t'

end while

h’/ := undefined

for i=0,...,h.or+1 do
if r; not undefined

h' := link (h/,r;)

end if

end for

return h’

end

register (t,r) :=

if r¢{o.ry1 is undefined then
Ttortl = t

else
t:=link (t ,Tto.TJr])
Tt.o.r+1 := undefined
register (t,r)

end if

end

(A figura 1.2 visualiza a operagao “link”.)

Observagao 1.7

Todas comparagoes de “register” sao justas. As comparagoes injustas ocorrem
na construgao da arvore final nas linhas 35-39. %

25

N O U W N~

1. Algoritmos em grafos

last

h, min

Figura 1.3.: Representacao de um heap binomial.

Lema 1.7
Num torneio balanceado o custo amortizado de “make-heap”, “insert”, “meld”
e “getmin” é O(1), o custo amortizado de “deletemin” é O(logn).

Prova. Usaremos o niimero de comparacoes injustas no torneio como poten-
cial. “make-heap” e “getmin” nao alteram o potencial, “insert” e “meld” au-
mentam o potencial por no maximo um. Portanto a complexidade amortizada
dessas operagoes é O(1). Para analisar “deletemin” da raiz r do torneio vamos
supor que houve k comparagdes injustas com r. Além dessas comparagoes in-
justas, r participou em no maximo logn comparacoes justas pelo lema 1.6.
Em soma vamos liberar no maximo k + logn arvores, que reduz o potencial
por k, e com no maximo k 4 logn comparacoes podemos produzir um novo
torneio. Dessas k+logn comparagoes no maximo logn sao comparagoes injus-
tas. Portanto o custo amortizado é k+logn —k+logn = 2logn = O(logn).
|

Heaps binomiais com varredura tnica O custo de representar o heap numa
arvore Unica é permitir comparagoes injustas. Uma alternativa é permitir
somente comparacoes justas, que implica em manter uma cole¢ido de O(logn)
arvores. A estrutura de dados resultante é similar com os heaps binomiais:
manteremos uma lista (simples) de raizes das &rvores, junto com um ponteiro
para a arvore com a raiz de menor valor. O heap é representado pela raiz de
menor valor, ver Fig. 1.3.

insert (h,c) :=
insere make heap(c) na lista de raizes
atualize a 4arvore minima

meld(}u ,hz) =
concatena as listas de hy e hy
atualize a arvore minima
Somente “deletemin” opera diferente agora:

26

1.3. Filas de prioridade e heaps

deletemin (h) :=
aloca um array de listas To...T[ogn]
remove a Aarvore minima da lista de raizes
distribui as restantes Aarvores sobre T

t:=h.o

while t not undefined do
t/=tu
t.u := undefined
insere t na lista T¢o.ry1
t:=1t’

end while

{ executa o maior numero possivel }
{ de comparagées justas num unico passo }

h := undefined { lista final de raizes }
for i=0,...,[logn] do
while [ri| > 2
t := link (7;.head,r;.head . next)
insere t na lista h
remove Ti.head,r;.head.next da lista 1y
end if
if |ri/=1 insere ri.head na lista h
end for
return h

Observagao 1.8
Continuando com comparagoes justas até sobrar somente uma arvore de cada
posto, obteremos um heap binomial. O

Lema 1.8

Num heap binomial com varredura tinica o custo amortizado de “make-heap”,
“insert”, “meld”, “getmin” é O(1), o custo amortizado de “deletemin” é
O(logmn).

Prova. Usaremos o dobro do nimero de arvores como potencial. “getmin”
nao altera o potencial. “make-heap”, “insert” e “meld” aumentam o potencial
por no méximo dois (uma drvore), e portanto possuem custo amortizado O(1).
“deletemin” libera no méaximo logn arvores, porque todas comparagcoes foram
justas. Com um numero total de h drvores, o custo de deletemin é O(h).
Sem perda de generalidade vamos supor que o custo é h. A varredura final

27

S T W N =

1. Algoritmos em grafos

ANZN AN

(a) r+1 r+1 40 >r+1 >r+1 r+0

SN N N N

(b) r+1 r+1 r+1 r+2 rvr+2 r+1 rv+0 >r+2

N\

>r+2 r+0

Figura 1.4.: Diferengas no posto de rp-heaps do tipo 1 (a) e tipo 2 (b).

executa pelo menos (h—logn)/2—1 comparagoes justas, reduzindo o potencial
por pelo menos h — logn — 2. Portanto o custo amortizado de “deletemin” é
h—(h—logn—2)=logn+2=0(logn). |

rp-heaps O objetivo do rp-heap ¢é adicionar ao heap binomial de varredura
lnica uma operacao “decreasekey” com custo amortizado O(1). A idefa e
os problemas sdo os mesmos do heap Fibonacci: (i) para tornar a operagao
eficiente, vamos cortar a sub-arvore do elemento cuja chave foi diminuida. (ii)
o heap Fibonacci usava cortes em cascata para manter um ntimero suficiente
de elementos na arvore; no rp-heap ajustaremos os postos do heap que perde
uma sub-arvore. Para poder cortar sub-arvores temos que permitir uma folga
nos postos. Num heap binomial a diferenca do posto de um elemento com o
posto do seu pai (caso existe) sempre é um. Num rp-heap do tipo 1, exigimos
somente que os dois filhos de um elemento possuem diferenca do posto 1 e 1,
ou 0 e ao menos 1. Num rp-heap do tipo 2, exigimos que os dois filhos de
um elemento possuem diferenca do posto 1 e 1, 1 e 2 ou 0 e pelo menos 2.
(Figura 1.4.)

Com isso podemos implementar o “decreasekey” (para rp-heaps do tipo 2)
como segue:

decreasekey (h,e,A) :=

e.c := e.c —A

if root(e)
return

if parent(e).o = e then
parent(e).o := e.u

28

1.3. Filas de prioridade e heaps

9

Figura 1.5.: A operagdo “decreasekey”.

7 else

8 parent(e).u := e.u

9 end if

10 parent (e).u := parent(e)

11 e.u := undefined
12 u := parent(e)

13 parent (e) := undefined

14 insere e na lista de raizes de h
15 decreaserank (u)

16

17 rank(e) :=

18 if e is undefined

19 return —1

20 else

21 return e.r

22

23 decreaserank (u) :=
24 if root(u)

25 return

26 if rank(u.o) > rank(u.u)+1 then
27 k := rank(u.o)

28 else if rank(u.u) > rank(u.o)+1 then
29 k := rank(u.u)

30 else

31 k = max(rank(u.o),rank(u.u))+1
32 end if

33 if u.r = k then

34 return

35 else

29

36
37
38
39
40
41

1. Algoritmos em grafos

= -

Figura 1.6.: Separar uma semi-arvore de posto k em duas.

u.r =k
decreaserank (parent (u))

delete (h,e) :=
decreasekey (h,e,—o0)
deletemin (h)

Observagao 1.9

Para implementar o rp-heap precisamos além dos ponteiros para o filho or-
denado e nao-ordenado um ponteiro para o pai do elemento. A (suposta)
eficiéncia do rp-heap vem do fato que o decreasekey altera os postos do heap,
e pouco da estrutura dele e do fato que ele usa somente trés ponteiros por
elemento, e nao quatro como o heap Fibonacci. O

Lema 1.9
Uma semi-arvore do tipo 2 com posto k contém pelo menos ¢* elementos,

sendo ¢ = (14 +/5)/2 a razdo 4urea.

Prova. Por indugao. Para folhas o lema é valido. Caso a raiz com posto k
néo ¢ folha podemos obter duas semi-arvores: a primeira é o filho da raiz sem
o seu filho nao-ordenado, e a segunda é a raiz com o filho nao ordenado do
seu filho ordenado (ver Fig. 1.6). Pelas regras dos postos de drvores de tipo
dois, essas duas arvores possuem postos k—Tek—1,ouk—1lek—2ouke
no maximo k — 2. Portanto, o menor nimero de elementos ny contido numa
semi-arvore de posto k satisfaz a recorréncia

Nk = Nk—1 + M,

que ¢é a recorréncia dos nimeros Fibonacci. |

Lema 1.10
As operacoes “decreasekey” e “delete” possuem custo amortizado O(1) e
O(logn)

Prova. Ver [26]. |

30

I R

1.3. Filas de prioridade e heaps

Tabela 1.2.: Complexidade das operacoes de uma fila de prioridade. Comple-

xidades em negrito sdo amortizados. (1): meld preguigoso.

insert getmin deletemin update decreasekey delete
Vetor O(1) o(1) O(n) O(1) (update) O(1)
Lista ordenada O(n) o(1) o(1) O(n) (update) O(1)
Heap binério O(logmn) o(1) O(logn) O (logn) (update) O(logn)
Heap binomial O(1) o(1) O(logm) O(logn) (update) O(logn)
Heap binomial(1) Oo(1) o(1) O(logn) O (logn) (update) O (logn)
Heap Fibonacci o(1) o(1) O(logmn) - O(1) O (logn)
rp-heap Oo(1) Oo(1) O(logn) - O(1) O(logn)

Resumo: Filas de prioridade A tabela 1.2 resume a complexidade das operagoes

para diferentes implementacoes de uma fila de prioridade.

1.3.5.

Arvores de van Emde Boas

Pela observagao 1.4 é impossivel implementar uma fila de prioridade baseado
em comparacao de chaves com todas operagdes em o(logn) . Porém existem
algoritmos que ordenam n ntmeros em o(nlogn), aproveitando o fato que as
chaves sao niimeros com k bits, como por exemplo o radix sort que ordena em
tempo O(kn), ou aproveitando que as chaves possuem um dominio limitado,

como

por exemplo o counting sort que ordena n nimeros em [k] em tempo

Om+Xk).

Uma

no un

drvore de van Emde Boas (érvore vEB) T realiza as operagoes
member(T, e): elemento e pertence a T?

insert(T, e): insere e em T

delete(T, e): remove e de T

min(T) e max(T): elemento minimo e méximo de T, ou “undefined” caso
nao existe

succ(T, e) e pred(T, e): successor e predecessor de e em T; e ndo precisa
pertencer a T

iverso de chaves [0,u — 1] em tempo O(loglogu) e espaco O(u).

Outras operagoes compostas podem ser implementados, por exemplo

de

de

letemin (T) :=
e:=min(T); delete(e); return e
letemax (T) :=
e:=max(T); delete(e); return e

31

1. Algoritmos em grafos

O o

.0 0.1 1.0 1.1 00.101.0 01.110.0 10.111.0

0 0G0 DELEGEE BEGEEDERDEERERE]

Figura 1.7.: Organizagao de arvores binarias em ordem de van Emde Boas para
h € [4]. As folhas sdo rotuladas por “cluster.subindice”. Abaixo
da arvore a ordem do armazenamento do vértices é dado. Os T;
correspondem com as subarvores do primeiro nivel de recursao.

Arvores binarias em ordem vEB Na discussio da implementagao de arvores
bindrias na pagina 12 discutimos uma representagao em ordem da busca por
profundidade (BFS order). A ideia da ordem vEB ¢ “cortar” a altura (nimero
de niveis) h de uma arvore binaria (que possui n = 2" —1 nodos e 2"~ folhas)
pela metade. Com isso obtemos

e uma drvore superior Tp de altura |h/2]

e ¢ b =22 —@(2"/2) = ©(y/n) 4rvores inferiores Ty,..., Ty de altura
[h/2] e com 2["/21 —1 = @(y/n) nodos.

Os nodos dessa arvore sao armazenados em ordem Ty, Tq,..., Ty e toda arvore
T; é ordenado recursivamente da mesma maneira, até chegar numa arvore de
altura h = 1, como a Figura 1.7 mostra.

Armazenar uma arvore bindria em ordem de vEB nao altera a complexi-
dade das operagoes. Uma busca, por exemplo, continua com complexidade
O(h). Porém, armazenado em ordem da busca por profundidade, uma busca
pode gerar @(h) falhas no cache, no pior caso. Na ordem de vEB, a busca
sempre atravessa Q(log, B) niveis, com B o tamanho de uma linha de ca-
che, antes de gerar uma nova falha no cache. Logo uma busca gera somente
O(log, n/log, B) = O(logg n) falhas no cache. O layout se chama cache obli-
vious porque funciona sem conhecer o tamanho de uma linha de cache B.

Arvores vEB A estrutura bdsica de uma drvore de vEB é

1. Usar uma arvore bindria de altura h representar 2"~' elementos nas
folhas.

32

\V]

—

1.3. Filas de prioridade e heaps

h h

[]

top bottom top bottom

L LI ITTT1T1] L L]
0 1 b—1 0 1

Figura 1.8.: Representacao da primeira versido de uma drvore vEB. (a) Forma
geral. (b) Caso base.

2. Cada folha armazena um bit, que é 1 caso o elemento correspondente
pertence ao conjunto representado.

3. Os bits internos servem como resumo da sub-arvore: eles representam
a conjuncao dos bits dos filhos, i.e. um bit interno é um, caso na sua
sub-arvore existe pelo menos uma folha que pertence ao conjunto repre-
sentado.

Todas as operagoes da estrutura acima podem ser implementadas em tempo
O(h) = O(logu). Para melhorar isso, vamos aplicar a mesma ideia da ordem
de van Emde Boas: a arvore é separada em uma arvore superior, e uma série
de arvores inferiores, cada uma com altura ~ h/2. As folhas da drvore superior
contém o resumo das raizes das arvores inferiores: por isso a arvore superior
possui altura |h/2| + 1, uma a mais comparado com a ordem de vEB.

Fig. 1.8 mostra essa representacdo. A altura da arvore estd armazenada no
campo h. Além disso temos um ponteiro “top” para a arvore superior, e
um vetor de ponteiros “bottom” de tamanho b = 2"/2) para as raizes das
arvores inferiores. No caso base com h = 2, abusaremos os campos “top”
e “bottom” para armazenar os bits da raiz e dos dois filhos: um ponteiro
arbitrdrio diferente de undefined representa um bit 1, o ponteiro undefined o
bit 0. Para isso servem as fungoes auxiliares

set(p) = p:=1

clear (p) := p:= undefined

bit (p) := return p # undefined
Observe que as folhas 0,1, ...,2"1—1 podem ser representadas com h—1 bits.
Os primeiros |h/2] bits representam o nidmero da sub-drvore que contém a
folha, e os tltimos [h/2]—1 bits o indice (relativo) da folha na sua sub-drvore.
Isso explica a definicao das funcoes auxiliares

subtree(e) := e> [h/2]—1

33

w N

O O Ui Wi+

1. Algoritmos em grafos

subindex (e) = e&(1 < [h/2]—1)—1

element (s,i) = (s« [h/2]—1)]1
para extrair de um elemento o niimero da sub-arvore correspondente, ou o seu
indice nesta sub-arvore, e para determinar o indice na arvore atual do i-ésimo
elemento da sub-arvore s.
Com isso podemos implementar as operagoes como segue.

member (T ,e) :=
if Th=2
return bit (T.bottom[e])

return member (T.bottom [subtree(e)],subindex(e))

min(T,e) :=
if Th=2
if bit(T.bottom[0])
return 0
if bit(T.bottom[1])
return 1
return undefined

c:=min (T.top)
if c = undefined
return c
return element (c,min(T.bottom|[c]))

succ (T ,e) :=
if Th=2
if e=0 and bit(T.bottom[1])=1
return 1
return 0

s:=succ (T.bottom [subtree(e)],subindex (e))
if s # undefined
return element (subtree(e),s)

c:=succ (T.top,subtree(e))
if c = undefined
return c

return element (c,min(T.bottom[c]))

insert (T,e) :=

34

35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50

o1

1.3. Filas de prioridade e heaps

if Th=2
set (T.bottom [e])
set (T.top)

else

insert (T.bottom [subtree(e)],subindex(e))
insert (T.top,subtree(e))

delete (T,e) :=
if Th=2
clear (T.bottom[e])
if (bit(T.bottom[1—e])=0
clear (T.top)
else

delete (T.bottom [subtree(e)],subindex(e))
s:=min(T.bottom [subtree(e)])
if s =undefined

delete (T.top,subtree(e))
As complexidades das operagoes implementadas no caso pessimista sdo (ver
as chamadas recursivas acima em vermelho):

member T(h) =T([h/2]) + O(1) = O(logh) = O(log logu).

min T(h) = T(|h/2] + 1) + T([h/2]) + O(1) = 2T(h/2) + O(1) = O(h) =
O(logu).

insert T(h) =T([h/2] +T(|h/2] +1)+ 0O(1) = BO(h) = O(logu).

]
T([h/2]) + T(|h/2] +1) + O(h) = 2T(h/2) + O(h) =
(1

succ/delete T(h)
= oguloglogu) (com um trabalho extra de O(h) para

O(hlogh) = ©
chamar “min”).
Logo todas operagoes com mais que uma chamada recursiva nao possuem
a complexidade desejada O(loglogu). A introducao de dois campos “min”
e “max” que armazenam o elemento minimo e méximo, junto com algumas
modificagoes resolvem este problema.

1. Armazenar somente o minimo, a opera¢do “min” custa somente O(1) é
“insert”, “succ” e “delete” consequentemente somente O(h).

2. Armazenado também o méaximo, sabemos na operagao “succ”’ se o su-
cessor esta na arvore atual sem buscar, logo a operagao “succ” pode ser
implementada em O(loglogu).

35

—_
H O © 00O Ot WwN K-

—_

S O W N~

1. Algoritmos em grafos

h min max h min max

L)L) L []

top bottom top bottom

L LTI T] Hann
0 1 b—1 0 1

(a) (b)

Figura 1.9.: Representacao uma drvore vEB. (a) Forma geral. (b) Caso base.

3. A ultima modificacio é ndo armazenar o elemento minimo na sub-drvore
correspondente. Com isso a primeira inser¢ao somente modifica a arvore
de resumo (top) e a segunda e as demais operagoes modificam somente
a sub-arvore correspondente. A delecao funciona similarmente: ela re-
move ou um elemento na sub-arvore, ou o 1ltimo elemento, modificando
somente a arvore de resumo (top). Com isso todas operagoes podem ser
implementadas em O(loglogu).

Na base armazenaremos os elementos somente nos campos “min” e “max”.
Por convengdo setamos “min” maior que “max” numa arvore vazia. As se-
guintes fungoes auxiliares permitem remover os elementos de uma arvore base
e determinar se uma arvore possui nenhum, um ou mais elementos.

clear (T) :=
T.min:=1; T.max:=0; // conveng¢dio

empty (T) =
return T.min>T.max

singleton (T) :=
return T.min=T.max

full(T) :=
return T.min<T.max

member (T ,e) :=
if empty(T)
return false
if T.min = e or T.max = e
return true

36

1.3. Filas de prioridade e heaps

7 { nao é ‘‘min’’ nem ‘‘max’’? a base nao contém o elemento }
8 if T.h = 2

9 return false

10

11 return member (T.bottom [subtree(e)],subindex (e))
12

13 min(T) :=

14 if empty(T)

15 return undefined

16 return T.min

17

18 max(T) :=

19 if empty(T)

20 return undefined

21 return T.max

22

23 succ(T,e) :=
24 if T.h=2

25 if e=0 and Tmax =1

26 return 1

27 return undefined

28

29 if not empty(T) and e < Tmin
30 return T.min

31

32 { sucessor na arvore atual }

33 m:=max(T.bottom [subtree(e)])
34 if m # undefined and subindex(e)<m

35 return element (subtree (e),

36 succ (T.bottom [subtree (e)],subindex(e)))
37

38 { minimo na arvore sucessora }

39 c:=succ (T.top,subtree(e))
40 if c = undefined

41 return c
42 return element (c,min(T.bottom[c]))
43

44 pred(T,e) :=
45 if T.h=2
46 if e=1 and T.min=0

37

47
48
49
50
51
52
93
54
55
56

o7

58
99

60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

1.

Algoritmos em grafos

return 0
return undefined

if not empty(T) and T.max < e
return T.max

{ predecessor na arvore atual }

m:=min(T.bottom [subtree (e)])

if m # undefined and m <subindex (e)
return element (subtree(e),

pred (T.bottom[subtree(e)],subindex(e)))

{ maximo na drvore predecessora }
c:=pred (T.top,subtree(e))
if ¢ = undefined
if not empty(T) and T.min<e
return T.min
else
return undefined

return element (c,max(T.bottom|[c]))

insert (T,e) :=

38

if empty(T)
T.min := T.max := e
return

{ novo minimo: setar min, insere min anterior }
if e <Tmin
swap (T.min,e)

{ insere recursivamente }
if Th>2
if empty(T.bottom[subtree(e)])
insert (T.top,subtree(e))
insert (T.bottom [subtree(e)],subindex(e))

{ novo méximo: atualiza }
if Tmax<e

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103
104
105

106
107
108
109
110
111
112
113
114

1.3. Filas de prioridade e heaps

Tmax := e

delete (T,e) :=
if empty(T)
return

if singleton(T)
if Tmin=e
clear (T)
return

{ novo minimo? }

if e=Tmin
T.min := element (min(T.top),min(T.bottom [min(T.top)]))
e := T.min

{ remove e da &arvore }
delete (T.bottom [subtree(e)],subindex(e))

if empty(T.bottom|[subtree(e)])
delete (T.top,subtree(e))
if e=Tmax
c:=max(T.top)
if ¢ = undefined

T.max := T.min
else
T.max := element (c,max(T.bottom[c]))
else
T.max := element (subtree(e),max(T.bottom[subtree(e)]))

Com essas implementagoes cada funcao executa uma chamada recursiva e um
trabalho constante a mais e logo precisa tempo O(logh). Em particular, na
fungao “insert” caso a sub-arvore do elemento é vazia na linha 80 a segunda
chamada “insert” na linha 82 precisa tempo constante. Similarmente, ou a
delecao recursiva na linha 103 nao remove o ultimo elemento, e talvez custa
O(logh), e logo a delecdo da linha 106 nao é executada, ou ela remove o tltimo
elemento e custo somente O(1).

39

1. Algoritmos em grafos

1.3.6. Tépicos

O algoritmo (assintoticamente) mais rédpido para arvores geradoras minimas
usa soft heaps é possui complexidade O(ma(m,n)), com « a fungéo inversa
de Ackermann [8, 30].

Armazenar e atravessar arvores em ordem de van Emde Boas usando indices,
similar ao ordem por busca em largura é possivel [6]. O consumo de memoria
das drvores de van Emde Boas pode ser reduzido para O(n) [12, 9.

1.3.7. Exercicios

Exercicio 1.1
Prove lema 1.3. Dica: Use inducao sobre n.

Exercicio 1.2
Prove que um heap binomial com n vértices possui O(logn) arvores. Dica:
Por contradigao.

Exercicio 1.3 (Laboratério 1)
1. Implementa um heap bindrio. Escolhe casos de teste adequados e verifica
o desempenho experimentalmente.

2. Implementa o algoritmo de Prim usando o heap binario. Novamente
verifica o desempenho experimentalmente.

Exercicio 1.4 (Laboratério 2)
1. Implementa um heap binomial.

2. Verifica o desempenho dele experimentalmente.

3. Verifica o desempenho do algoritmo de Prim com um heap Fibonacci
experimentalmente.

Exercicio 1.5
A proposi¢ao 1.3 continua ser correto para grafos com pesos negativos? Jus-
tifique.

40

1.4. Fluxos em redes

Figura 1.10.: Grafo (esquerda) com circulagdo (direita)

1.4. Fluxos em redes

Definicao 1.1

Para um grafo direcionado G = (V, E) (E C V xV) escrevemos 51 (v) = {(v,u) |
(v,u) € E} para os arcos saintes de v e 5~ (v) = {(u,v) | (u,v) € E} para os
arcos entrantes em v.

Seja G = (V,E,c) um grafo direcionado e capacitado com capacidades ¢
E — R nos arcos. Uma atribui¢ao de fluxos aos arcos f : E — R em G se
chama circulagdo, se os fluxos respeitam os limites da capacidade (fo < c.) e
satisfazem a conservacao do fluxo

Zf—Zf—O (1.1)

ecdt(v) ecd(v)

(ver Fig. 1.10).

Lema 1.11
Qualquer atribuicao de fluxos f satisfaz) | . f(v) = 0.

Prova.

> f(v)

2 2 fem 2

vev veVeedt(v) ecd—(v)
=) fouw—) fuwm=0
(viu)ek (u,v)€E

|
A circulagao vira um fluzo, se o grafo possui alguns vértices que sao fontes
ou destinos de fluxo, e portanto nao satisfazem a conservacao de fluxo. Um

41

1. Algoritmos em grafos

fluxo s—t possui um tnico fonte s e um tnico destino t. Um objetivo comum
(transporte, etc.) é achar um fluxo s—t maximo.

FLUXO s—t MAXIMO

Instancia Grafo direcionado G = (V, E,c) com capacidades ¢ nos arcos,
um vértice origem s € V e um vértice destino t € V.

Solucdo Um fluxo f, com f(v) =0, Vv € V\ {s, t}.

Objetivo Maximizar o fluxo f(s).

Lema 1.12
Um fluxo s—t satisfaz f(s) + f(t) = 0.

Prova. Pelo lema 1.11 temos) .\ f(v) = 0. Mas } . f(v) = f(s) + f(t)
pela conservagao de fluxo nos vértices em V \ {s, t}. |

Uma formulacao como programa linear é

maximiza f(s) (1.2)
sujeito a f(v)=0 Yv e V\{s,t}
0<fe<ce Ve € E.

Observagao 1.10

O programa (1.2) possui uma solugao, porque f. = 0 é uma solucado vidvel. O
sistema nao ¢ ilimitado, porque todas varidveis sao limitadas, e por isso possui
uma solugao 6tima. O problema de encontrar um fluxo s—t méaximo pode ser
resolvido em tempo polinomial via programagao linear. O

1.4.1. Algoritmo de Ford-Fulkerson

Nosso objetivo: Achar um algoritmo combinatorial mais eficiente. Idéia
bésica: Comegar com um fluxo vidvel fo = 0 e aumentar ele gradualmente.
Observacdo: Se temos um s—t-caminho P = (vg = $,V1,...,Vn_1,Vn = t),
podemos aumentar o fluxo atual f um valor que corresponde ao “gargalo”

g(f,P) := min c, — fe.
e=(vi,vitp1)
0<i<n

42

1.4. Fluxos em redes

20

20 ™)

Figura 1.11.: Esquerda: Grafo com capacidades. Centro: Fluxo com valor 30.
Direita: O grafo residual correspondente.

o B) B

Figura 1.12.: Manter a conservacao do fluxo.

Observagao 1.11

Repetidamente procurar um caminho com gargalo positivo e aumentar nem
sempre produz um fluxo maximo. Na Fig. 1.11 o fluxo méaximo possivel é
40, obtido pelo aumentos de 10 no caminho P; = (s,u,t) e 30 no caminho
P, = (s,w,t). Mas, se aumentamos 10 no caminho P; = (s,u,w,t) e depois
20 no caminho P, = (s,w,t) obtemos um fluxo de 30 e o grafo ndo possui
mais caminho que aumenta o fluxo. O

Problema no caso acima: para aumentar o fluxo e manter a conservagao do
fluxo num vértice interno v temos quatro possibilidades: (i) aumentar o fluxo
num arco entrante e sainte, (ii) aumentar o fluxo num arco entrante, e diminuir
num outro arco entrante, (iii) diminuir o fluxo num arco entrante e diminuir
num arco sainte e (iv) diminuir o fluxo num arco entrante e aumentar num
arco entrante (ver Fig. 1.12).

Isso é a motivagao para definir para um dado fluxo f o grafo residual G com

e Vértices V

e Arcos para frente (“forward”) E com capacidade c. — fe, caso fe < ce.

43

1. Algoritmos em grafos

e Arcos para atras (“backward”) E' ={(v,u) | (u,v) € E} com capacidade
Clv,u) = f(u,v)v caso f(u,v) > 0.

Observe que na Fig. 1.11 o grafo residual possui um caminho P = (s, w,u,t)
que aumenta o fluxo por 10. O algoritmo de Ford-Fulkerson [18] consiste em,
repetidamente, aumentar o fluxo num caminho s—t no grafo residual.

Algoritmo 1.4 (Ford-Fulkerson)
Entrada Grafo G = (V,E,c) com capacidades c. no arcos.

Saida Um fluxo f.

1 for all ecE: f,:=0

while existe um caminho s t em G; do
Seja P um caminho s t simples
Aumenta o fluxo f um valor g(f,P)

end while

return f

S U W N

Andlise de complexidade Na analise da complexidade, consideraremos so-
mente capacidades em N (ou equivalente em Q: todas capacidades podem ser
multiplicadas pelo menor multiplo em comum das denominadores das capaci-
dades.)

Lema 1.13
Para capacidades inteiras, todo fluxo intermedidrio e as capacidades residuais
sao inteiros.

Prova. Por indug@o sobre o nimero de iteragoées. Inicialmente f = 0. Em
cada iteracdo, o “gargalo” g(f, P) é inteiro, porque as capacidades e fluxos sdo
inteiros. Portanto, o fluxo e as capacidades residuais apés do aumento sao
novamente inteiros. |

Lema 1.14
Em cada iteracao, o fluxo aumenta ao menos 1.

Prova. O caminho s—t possui por defini¢do do grafo residual uma capacidade
“gargalo” g(f,P) > 0. O fluxo f(s) aumenta exatamente g(f, P). |

Lema 1.15
O niimero de iterages do algoritmo Ford-Fulkerson é limitado por C =) _ . 5+(s) Ce-
Portanto ele tem complexidade O((n +m)C).

44

1.4. Fluxos em redes

Prova. C é um limite superior do fluxo méximo. Como o fluxo inicial-
mente possui valor 0 e aumenta ao menos 1 por iteracdo, o algoritmo de
Ford-Fulkerson termina em no méximo C iteragbes. Em cada iteragao temos
que achar um caminho s—t em Gf. Representando G por listas de adjacéncia,
isso é possivel em tempo O(n+m) usando uma busca por profundidade. O au-
mento do fluxo precisa tempo O(n) e a atualizacdo do grafo residual é possivel
em O(m), visitando todos arcos. [|

Corretude do algoritmo de Ford-Fulkerson

Definicao 1.2

Seja X := V\ X. Escrevemos F(X,Y) := {(x,y) | x € X,y € Y} para os arcos
passando do conjunto X para Y. O fluxo de X para Y é f(X,Y) := ZeeF(ny) fe.
Ainda estendemos a notagao do fluxo total de um vértice (1.1) para conjuntos:
f(X) == f(X,X) — f(X,X) é o fluxo neto do saindo do conjunto X.
Analogamente, escrevemos para as capacidades c(X,Y) := ZQGF(X’\,) Ce. Uma
particdo (X, X) é um corte s—t,se s € Xete X.

Um arco e se chama saturado para um fluxo f, caso fo = ce.

Lema 1.16 ~
Para qualquer corte (X, X) temos f(X) = f(s).
Prova. - -

f(X) = £(X,X) = (X, X) = D f(v) = f(s).

veX

(O dltimo passo é correto, porque para todo v € X, v # s, temos f(v) = 0 pela
conservacao do fluxo.) |
Lema 1.17

O valor ¢(X,X) de um corte s—t é um limite superior para um fluxo s—t.

Prova. Seja f um fluxo s—t. Temos

f(s) = f(X) = F(X, X) — (X, X) < f(X,X) < e(X,X).
]

Consequéncia: O fluxo maximo é menor ou igual a o corte minimo. De fato,
a relacao entre o fluxo méaximo e o corte minimo é mais forte:

Teorema 1.2 (Fluxo maximo — corte minimo)
O valor do fluxo maximo entre dois vértices s e t é igual a do corte minimo.

Lema 1.18
Quando o algoritmo de Ford-Fulkerson termina, o valor do fluxo é maximo.

45

1. Algoritmos em grafos

Prova. O algoritmo termina se nao existe um caminho entre s e t em Gy.
Podemos definir um corte (X, X), tal que X é o conjunto de vértices alcancéveis
em Gy a partir de s. Qual o valor do fluxo nos arcos entre X e X? Para um
arco e € F(X,X) temos fo = ce, sendo Gy terd um arco “forward” e, uma
contradicdo. Para um arco e = (u,v) € F(X,X) temos f. = 0, sendo Gy terd
um arco “backward” e’ = (v,u), uma contradigdo. Logo

f(s) = f(X) = f(X, X) — (X, X) = f(X, X) = c(X, X).

Pelo lema 1.17, o valor de um fluxo arbitrario é menor ou igual que c(X, X),
portanto f é um fluxo méaximo. |
Prova. (Do teorema 1.2) Pela andlise do algoritmo de Ford-Fulkerson. |

Desvantagens do algoritmo de Ford-Fulkerson O algoritmo de Ford-Fulkerson
tem duas desvantagens:

(1) O ntimero de iteragoes C pode ser alto, e existem grafos em que C iteragdes
sao necessérias (veja Fig. 1.13). Além disso, o algoritmo com complexi-
dade O((n + m)C) é somente pseudo-polinomial.

(2) E possivel que o algoritmo néo termina para capacidades reais (veja Fig. 1.13).
Usando uma busca por profundidade para achar caminhos s—t ele termina,
mas é ineficiente [11].

1.4.2. O algoritmo de Edmonds-Karp

O algoritmo de Edmonds-Karp elimina esses problemas. O principio dele é
simples: Para achar um caminho s—t simples, usa busca por largura, i.e. sele-
cione o caminho mais curto entre s e t. Nos temos

Teorema 1.3
O algoritmo de Edmonds-Karp precisa O(nm) iteragoes, e portanto termina

em O(nm?).

Lema 1.19
Seja &¢(v) a distancia entre s e v em Gy¢. Durante a execugdo do algoritmo de
Edmonds-Karp 6¢(v) cresce monotonicamente para todos vértices em V.

Prova. Para v =s o lema ¢ evidente. Supoe que uma iteracao modificando o
fluxo f para f’ diminuird o valor de um vértice v e V\{s}, i.e., 5¢(v) > 8¢/ (v).
Supde ainda que v é o vértice de menor distancia 8¢/(v) em Gf, com essa
caracteristica. Seja P = (s,...,u,v) um caminho mais curto de s para v

46

1.4. Fluxos em redes

Figura 1.13.: Esquerda: Pior caso para o algoritmo de Ford-Fulkerson com pe-
sos inteiros aumentando o fluxo por 2N vezes por 1 nos caminhos
(s,u,v,t) e (s,v,u,t). Direita: Menor grafo com pesos irracio-
nais em que o algoritmo de Ford-Fulkerson falha [43]. M > 3, e
r=(14++T—4A)/2 com A = 0.217 a tnica raiz real de T —5x 4 2x* —
x>. Aumentar (s,v1,v4,t) e depois repetidamente (s,v2,va4,v1,v3,t),
(s,v2,v3,vi,va,t), (s,v1,V3,v2,va,t), e (s,V1,V4,V2,V3,t) converge
para o fluxo méximo 2 + r + 72 sem terminar.

em G¢/. O valor de u ndo diminuiu nessa iteragdo (pela escolha de v), i.e.,
Of(u) < ¢/ (u) ().

O arco (u,Vv) nao existe in Gy, sendo a distancia do v in G é no méximo a
distancia do v in Gy¢/: Supondo (u,v) € E(G¢) temos

S¢(v) < &s(u)+1 pela desigualdade triangular
< Op(u) +1 (*)
< d¢r(v) porque uv estd num caminho minimo em Gy,

uma contradigao com a hipétese que a distancia de v diminuiu. Portanto,
(u,v) € E(G¢) mas (u,v) € E(G¢/). Isso 86 é possivel se o fluxo de v para u
aumentou nessa iteracdo. Em particular, vu foi parte de um caminho minimo
de s para u. Para v =t isso é uma contradi¢cao imediata. Caso v # t, temos

8¢(v) = 0¢(u) — 1
< Spr(u) —1 *)
=45 (v)—2 porque uv estd num caminho minimo em Gg¢/,

novamente uma contradigao com a hipotese que a distdncia de v diminuiu.
Logo, o vértice v nao existe. |
Prova. (do teorema 1.3)

47

1. Algoritmos em grafos

Chama um arco num caminho que aumenta o fluxo com capacidade igual
ao gargalo critico. Em cada iteragao existe ao menos um arco critico que
desaparece do grafo residual. Provaremos que cada arco pode ser critico no
méximo n/2 — 1 vezes, que implica em no miximo m(n/2 — 1) = O(mn)
iteracoes.

No grafo G em que um arco uv € E é critico pela primeira vez temos d¢(u) =
d¢(v)—1. O arco s6 aparece novamente no grafo residual caso alguma iteragao
diminui o fluxo em wv, i.e., aumenta o fluxo vu. Nessa iteracao, com fluxo f,
d¢/(v) = d¢/(u) — 1. Em soma temos

8¢/ (u) =8¢/ (v) +1
> d¢(v) + 1 pelo lema 1.19

= 6f(u) + 2)

i.e., a distancia do u entre dois instantes em que uv é critico aumenta por
pelo menos dois. Enquanto u é alcancével por s, a sua distancia é no maximo
n — 2, porque o caminho nao contém s nem t, e por isso a aresta uv pode ser
critico por no méximo (n—2)/2 =n/2 — 1 vezes. |
Zadeh [42] apresenta instancias em que o algoritmo de Edmonds-Karp precisa
O(n3) iteracdes, logo o resultado do teorema 1.3 é o melhor possivel para
grafos densos.

1.4.3. O algoritmo “caminho mais gordo” (“fattest path”)

Idéia [14]: usar o caminho de maior gargalo para aumentar o fluxo. (Exercicio 1.6
pede provar que isso é possivel com uma modificacao do algoritmo de Dijkstra
em tempo O(nlogn + m).)

Lema 1.20
Um fluxo f pode ser decomposto em no maximo m fluxos fi,...,fx tal que o
fluxo f; é positivo somente num caminho p; entre s e st.

Prova. Dado um fluxo f, encontra um caminho p de s para t usando somente
arcos com fluxo positivo. Define um fluxo no caminho cujo valor é o valor do
menor fluxo de algum arco em p. Subtraindo esse fluxo do fluxo f obtemos
um novo fluxo reduzido. Repete até o valor do fluxo f é zero.

Em cada iteracao pelo menos um arco com fluxo positivo tem fluxo zero depois
da subtracao do caminho p. Logo o algoritmo termina em no maximo m
iteragoes. O conjunto de caminhos encontrados com os fluxos correspondentes
satisfaz as condigoes do lema. |

Teorema 1.4
O caminho com o maior gargalo aumenta o fluxo por, pelo menos, OPT/m.

48

1.4. Fluxos em redes

Prova. Considera o fluxo maximo. Pelo lema 1.20 existe uma decomposicao
do fluxo em no méximo m fluxos em caminhos s-t. Logo um dos caminhos
possui valor pelo menos OPT/m. |

Teorema 1.5

A complexidade do algoritmo de Ford-Fulkerson usando o caminho de maior
gargalo é O((nlogn + m)mlog C) para um limitante superior C do fluxo
maximo.

Prova. Seja f; o valor do caminho encontrado na i-ésima iteragao, G; o grafo

residual apds do aumento e OPT; o fluxo maximo em Gji. Observe que Gy é
o grafo de entrada e OPTy = OPT o fluxo méaximo. Temos

A segunda desigualdade é valida pelo teorema 1.4, considerando que o grafo
residual possui no maximo 2m arcos. Logo

OPT; < (1 —1/(2m))'OPT < e~ ¥/ 2™ QOPT.

O algoritmo termina caso OPT; < 1, por isso niimero de iteragdes é no maximo
2mIn OPT + 1. Cada iteracao custo O(m + nlogn). []

Corolario 1.2
Caso U é um limite superior da capacidade de um arco, o algoritmo termina
em no maximo O(mlogmU) passos.

1.4.4. O algoritmo push-relabel

O algoritmo push-relabel é um representante de classe de algoritmos, que nao
trabalha com um fluxo e caminhos aumentantes, mas mantém um pré-fluxo f
que satisfaz

e os limites de capacidade (0 < f. < c.)

7

e ¢ requer somente que o excesso e(v) = —f(v) de um vértice v # s é
nao-negativo.
Um vértice v # t com e(v) > 0 é chamado ativo. A ideia do algoritmo é
que vértices possuem uma “altura” e o fluxo passa para vértices de altura
mais baixa (“operacdo push”) ou, caso isso ndo é possivel a altura de um
vértice ativo aumenta (“operagao relabel”). Concretamente, manteremos um
potencial (“altura”) p, para cada v € V, tal que,

Ps=mn; Ppe=0; (*)
Pv>Pu—1 (u,v) € A(Gy).

49

CO O UL i W N+

— = ==
W N = OO

1. Algoritmos em grafos

Observagao 1.12

Pela condigao (*), para um caminho vp,v1,..., vk em Gy temos py, < pyv, +
1§Pvz+2§"'§pvk+k- O
Lema 1.21

A condigdo (*) é satisfeita sse G néo possui caminho s—t.

Prova. “=": Supobe existe um caminho s—t simples vo = s,vy,..., v = t.
Pela observagao (1.12)

Ps =Pvo <Py, +k=pt+k=k<n-—1,

uma contradigao. “&”: Sejam X os vértices alcangaveis em Gy a partir de s
(incluindo s). Define p, =n parav € X e p, = 0 para v € X. [|
O lema mostra que enquanto algoritmos de caminho aumentante sao algorit-
mos primais, mantendo uma solugao factivel, até encontrar o 6timo, algoritmos
da classe push-relabel podem ser vistos como algoritmos duais: eles mantém
o critério de otimalidade, até encontrar uma solugao factivel.

Podemos realizar as operagoes “push” e “relabel” como segue. A operagao
“push(u,v)” num arco (u,v) € A(G¢) manda o fluxo min{c,, e(v)} de u para
v. A operagao “relabel(v) aumenta a altura p,, do vértice v por uma unidade.

push(u,v) :=
{ pré condigdo: u é ativo }
{ pré condigao: p,=p,—1 }
{ pré condigao: (u,v)e A(Gy) }
aumenta o fluxo em (u,v) por min{c(),e(u)}
{ atualiza G; de acordo }
end
relabel(v) :=
{ pré condicao: v é ativo }
{ pré condigdo: nao existe (u,v) € A(G¢) com p, =p,—1 }
Pvi=pv+1
end

Observe que as duas operagoes mantém a condicao (*).

Algoritmo 1.5 (Push-relabel)
Entrada Grafo G = (V, A, c) com capacidades ¢, no arcos.

Saida Um fluxo f.
1 ps:=n; p,:=0, vv e V\{s}

50

1.4. Fluxos em redes

2 fqoi=cq, Va€edt(s) senao fq:=0

3 while existe vértice ativo do

4 escolhe o vértice ativo u de maior py
5 repete até u é inativo

6 if existe arco (w,v) € Gf com p, =py,—1 then
7 push(u,v)

8 else

9 relabel(u)

10 end if

11 end

12 end while

13 return f

Lema 1.22
O algoritmo push-relabel é parcialmente correto (i.e. correto caso termina).

Prova. Ao terminar ndo existe vértice ativo. Logo f é um fluxo. Pelo lema
1.21 nao existe caminho s—t em G¢. Logo pelo teorema 1.2 o fluxo é 6timo. W
A terminacao é garantido por

Teorema 1.6
O algoritmo push-relabel executa O(n3) operacdes push e O(n?) operacoes
relabel.

Prova. Um vértice ativo v tem excesso de fluxo, logo existe um caminho v—s
em Gy. Por (1.12) py, < ps+(n—1) < 2n, e o nimero de operagoes relabel é no
O(n?). Supde que uma operacao push satura um arco a = (u,v) (i.e. manda
fluxo ¢q). Para mandar fluxo novamente, temos que mandar primeiramente
fluxo de v para u; isso s6 pode ser feito depois de pelo menos duas operagoes
relabel em v. Logo o niimero de operagdes push saturantes é O(mn). Para
operagoes push nao-saturantes, podemos observar que entre duas operagoes
relabel temos no maximo n desses operagoes, porque cada uma torna o vértice
de maior p,, inativo (talvez ativando vértices de menor potentical), logo tem
no maximo O(n?) deles. |
Para garantir uma complexidade de O(n?) temos que implementar um “push”
em O(1) e um “relabel” em O(n). Para este fim, manteremos uma lista dos
vértices em ordem do potencial. Para cada vértice manteremos uma lista de
arcos candidatos para operagoes push, i.e. arcos para vizinhos com potencial
um a menos com capacidade residual positiva.

Uma busca linear na lista de vértices encontra o vértice de maior potencial.
Entre dois operacoes relabel a busca pode continuar no 1ltimo ponto e pre-
cisa tempo O(n) em total, logo a busca custa no maximo O(n3) sobre toda

ol

1. Algoritmos em grafos

Tabela 1.3.: Complexidade para diversos algoritmos de fluxo méximo [38].

Ano Referéncia Complexidade Obs

1951 Dantzig 0(n’m0Q) Simplex

1955 Ford & Fulkerson O(mC) = O(mnlU) Cam. aument.

1970 Dinitz O(nm?) Cam. min. aument.

1972 Edmonds & Karp O(m?1log C) Escalonamento

1973 Dinitz O(n mlog C) Escalonamento

1974 Karzanov o(n? Preflow-Push

1977 Cherkassky o(n?m'/?) Preflow-Push

1986 Goldberg & Tarjan O(nm log(2/m)) Push-Relabel

1987 Ahuja & Orlin O(nm+ n?log C) Push-Relabel & Esc.

1990 Cheriyan et al. O(n®/logn)

1990 Alon O(nm+n®3logn)

1992 King et al. O(nm+n?*¢)

1997 Goldberg & Rao O(m3/?log(n?/m) log C)
0(n?*mlog(n?/m)log C)

2012 Orlin O(nm)

execugao do algoritmo. Para a operagao push podemos simplesmente consul-
tar a lista de candidatos. Para um push saturante, o candidato sera removido.
Isso custa O(1). Finalmente no caso de um relabel temos que encontrar em
O(n) a nova posi¢ao do vértice na lista, e reconstruir a lista de candidatos,
que também precisa tempo O(n). Logo todas operagoes relabel custam néao
mais que O(n3).

1.4.5. Variacoes do problema

Fontes e destinos miiltiplos Para G = (V| E, ¢) define um conjunto de fontes
S C V e um conjunto de destinos T C V, com SNT = (), e considera

maximiza f(S)
sujeito a f(v) =0 YweV\(SUT) (1.3)
fe < ce Ve € E.

92

1.4. Fluxos em redes

Ce — be

be be

Figura 1.14.: Redugoes entre variacoes do problema do fluxo méximo. FEs-
querda: Fontes e destinos multiplos. Direita: Limite inferior e
superior para a capacidade de arcos.

O problema (1.3) pode ser reduzido para um problema de fluxo méximo sim-
plesem G’ = (V',E’,c’) (veja Fig. 1.14(a)) com

V' =Vu/{s*t*}

E'=EBEuU{(s*,s) s StU{(t,t*) |t T} (1.4)
Ce eckE

c.=<¢(S,S) e=(s*5s)

C(T)T) €= (tvt*)

Lema 1.23
Se f’ é solugdo méxima de (1.4), f = f'|[g é uma solucdo maxima de (1.3).
Conversamente, se f é uma solugdo maxima de (1.3),

fe eckE
fl=<1f(s) e=/(s*5s)
f() e=(tt")

¢ uma solugdo maxima de (1.4).

Prova. Supoe f é solucdo méxima de (1.3). Seja f’ uma solugdo de (1.4)
com valor f'(s*) maior. Entao f’[¢ é um fluxo vélido para (1.3) com solugao
f'lg(S) = f'(s*) maior, uma contradico.

Conversamente, para cada fluxo vdlido f em G, a extensdo f’ definida acima
¢ um fluxo vélido em G’ com o mesmo valor. Portanto o valor do maior fluxo
em G’ é maior ou igual ao valor do maior fluxo em G. |

53

1. Algoritmos em grafos

‘5/10‘ 0/4 ‘ ‘5/10 ‘ 0/5 .
5 5

o0

Figura 1.15.: Dois exemplos da transformagao do lema 1.24. Esquerda: Grafo
sem solucao viavel e grafo transformado com fluxo maximo 4. Di-
reita: Grafo com solugéo vidvel e grafo transformado com fluxo
maximo 5.

Limites inferiores Para G = (V,E,b,c) com limites inferiores b : E — R
considere o problema

maximiza f(s)
sujeito a f(v) =0 vv e V\{s,t} (1.5)
be <fe <ce eckE.

O problema (1.5) pode ser reduzido para um problema de fluxo maximo sim-
ples em G’ = (V/,E’,c’) (veja Fig. 1.14(b)) com

V' =Vu{s*,t*}
E'=EU{(u,t") | (u,v) € E}U{(s",v) | (u,v) € E}U{(t",s")} (1.6)

Ce — be eckE
¢! = ZVEN“'(u) b(u;\’) €= (u) t*)
‘ ZuEN*(v) b(u,v) €= (S*)V)
00 e=(t,s)
Lema 1.24

Problema (1.5) possui uma solugéo vidvel sse (1.6) possui uma solu¢do méxima
com todos arcos auxiliares E’\ E saturados. Neste caso, se f é um fluxo méximo

54

1.4. Fluxos em redes

fe —be eck
ZueN*(v) b("»u) €= (V, t*)

*

ZuEN*(v) by e=(s"u)
f(s) e=(t,s)

¢ um fluxo méximo de (1.6) com arcos auxiliares saturados. Conversamente,
se f/ é um fluxo mdximo para (1.6) com arcos auxiliares saturados, fe = f.+be
é um fluxo maximo em (1.5).

Prova. (Exercicio.) [|
Para obter um fluxo méximo de (1.5) podemos maximizar o fluxo a partir da
solugao viavel obtida, com qualquer variante do algoritmo de Ford-Fulkerson.
Uma alternativa para obter um fluxo méaximo com limites inferiores nos arcos
¢é primeiro mandar o limite inferior de cada arco, que torna o problema num
problema de encontrar o fluxo s-t maximo num grafo com demandas.

Existéncia de uma circulacdo com demandas Para G = (V,E,c) com de-
mandas d,, com d, > 0 para destinos e d,, < 0 para fontes, considere

existe f
s.a f(v) =—d, VeV (1.7)
fe < ce e € k.

Evidentemente) | .\ d, = 0 é uma condigdo necessédria (lema (1.11)). O
problema (1.7) pode ser reduzido para um problema de fluxo méximo em
G’'=(V',E’) com

V' =Vu/{s*t*}

E'=EuU{(s*,v)|veV,d, <0}U{(v,t*) |veV,d, >0} (1.8)
Ce eckE

Ce =14 —d, e=(s*v)
d, e = (v, t%)

Lema 1.25

Problema (1.7) possui uma solugéo sse problema (1.8) possui uma solugéo com
fluxo maximo D = Zv:dv>o d,.

Prova. (Exercicio.) |

%)

1. Algoritmos em grafos

Circulacdes com limites inferiores Para G = (V,E, b, c) com limites inferio-
res e superiores, considere

existe f
s.a f(v) =d, YWweV (1.9)
be < fe <ce e c k.

O problema pode ser reduzido para a existéncia de uma circulagdo com so-
mente limites superiores em G’ = (V/,E’,c¢’,d’) com

V=V
E'=E (1.10)
Ce = Ce — bg

fd—ZbJer (1.11)

ecd—(v) e€d™(v)

Lema 1.26
O problema (1.9) possui solucdo sse problema (1.10) possui solugao.

Prova. (Exercicio.) [|

1.4.6. Aplicacdes

Projeto de pesquisa de opiniao O objetivo é projetar uma pesquisa de
opiniao, com as restrigoes

e Cada cliente i recebe ao menos c¢; perguntas (para obter informagao sufi-
ciente) mas no méximo ¢{ perguntas (para néo cansar ele). As perguntas
podem ser feitas somente sobre produtos que o cliente ja comprou.

e Para obter informacdes suficientes sobre um produto, entre p; e p{ cli-
entes tem que ser interrogados sobre ele.

Um modelo é um grafo bi-partido entre clientes e produtos, com aresta (ci,p;)
caso cliente 1 ja comprou produto j. O fluxo de cada aresta possui limite
inferior 0 e limite superior 1. Para representar os limites de perguntas por
produto e por cliente, introduziremos ainda dois vértices s, e t, com arestas
(s,ci) com fluxo entre c; e c] e arestas (pj,t) com fluxo entre p; e pj’ e uma
aresta (t,s).

o6

1.4. Fluxos em redes

Segmentacao de imagens O objetivo é segmentar um imagem em duas
partes, por exemplo “foreground” e “background”. Supondo que temos uma
“probabilidade” a; de pertencer ao “foreground” e outra “probabilidade” de
pertencer ao “background” b; para cada pixel i, uma abordagem direta é
definir que pixels com a; > b; sao “foreground” e os outros “background”. Um
exemplo pode ser visto na Fig. 1.17 (b). A desvantagem dessa abordagem é que
a separagao ignora o contexto de um pixel. Um pixel, “foreground” com todos
pixel adjacentes em “background” provavelmente pertence ao “background”
também. Portanto obtemos um modelo melhor introduzindo penalidades pi;
para separar (atribuir & categorias diferentes) pixel adjacentes i e j. Um
particdo do conjunto de todos pixels I em A U B tem um valor de

q(A,B) = Zai+zbi_ Z Pij
icA icB (i,j)EAXB

nesse modelo, e o0 nosso objetivo é achar uma parti¢do que maximiza q(A, B).
Isso é equivalente a minimizar

QAB)=) ai+bi—) ai—) bi+ Y py

iel ieA ieB (i,j)EAXB
= E a; + E bi + E Pij-
ieB icA (i,j)EAXB

A solucdo minima de Q(A,B) pode ser visto como corte minimo num grafo.
O grafo possui um vértice para cada pixel e uma aresta com capacidade pi;
entre dois pixels adjacentes i e j. Ele possui ainda dois vértices adicionais
s e t, arestas (s,1) com capacidade a; para cada pixel i e arestas (i,t) com
capacidade b; para cada pixel i (ver Fig. 1.16).

Seqiienciamento O objetivo é programar um transporte com um ntimero k
de veiculos disponiveis, dado pares de origem-destino com tempo de saida e
chegada. Um exemplo é um conjunto de voos é

1. Porto Alegre (POA), 6.00 — Florianopolis (FLN), 7.00
2. Florianopolis (FLN), 8.00 — Rio de Janeiro (GIG), 9.00
3. Fortaleza (FOR), 7.00 — Jodo Pessoa (JPA), 8.00

4. Sao Paulo (GRU), 11.00 — Manaus (MAO), 14.00

5. Manaus (MAO), 14.15 — Belem (BEL), 15.15

o7

1. Algoritmos em grafos

i ok 1
a 30 19 12 10
b 20 15 16 25

Figura 1.16.: Exemplo da construgdo para uma imagem 2 x 2. Direita: Tabela
com valores pele/nao-pele. Esquerda: Grafo com penalidade fixa
Pij = 10.

Figura 1.17.: Segmentacdo de imagens com diferentes penalidades p. Acima:
(a) Imagem original (b) Segmentagao somente com probabilida-
des (p =0) (c) p = 1000 (d) p = 10000. Abaixo: (a) Walter
Gramatté, Selbstbildnis mit rotem Mond, 1926 (b) Segmentagao
com p = 10000. A probabilidade de um pixel representar pele
foi determinado conforme Jones e Rehg [28].

o8

1.4. Fluxos em redes

6. Salvador (SSA), 17.00 — Recife (REC), 18.00

O mesmo aviao pode ser usado para mais que um par de origem e destino, se
o destino do primeiro é o origem do segundo, em tem tempo suficiente entre
a chegada e saida (para manutengdo, limpeza, etc.) ou tem tempo suficiente
para deslocar o aviao do destino para o origem.

Podemos representar o problema como grafo direcionado aciclico. Dado pa-
res de origem destino, ainda adicionamos pares de destino-origem que sao
compativeis com as regras acimas. A idéia é representar avides como fluxo:
cada aresta origem-destino é obrigatério, e portanto recebe limites inferiores
e superiores de 1, enquanto uma aresta destino-origem é facultativa e recebe
limite inferior de O e superior de 1. Além disso, introduzimos dois vértices s
e t, com arcos facultativos de s para qualquer origem e de qualquer destino
para t, que representam os comegos e finais da viagem completa de um aviao.
Para decidir se existe um solugao com k avides, finalmente colocamos um arco
(t,s) com limite inferior de O e superior de k e decidir se existe uma circulagao
nesse grafo.

O problema P | pmtn,r; | Lyax Primeiramente resolveremos um problema
mais simples: sera que existe um sequenciamento tal que toda tarefa i executa
dentro do seu intervalo [ri, di]? Equivalentemente, serd que existe uma solucao
com Ly =07

Seja{thtZ)-")tk} :{THT'Z»'-~rn}U{d1)d2)--~adn}; comt; <t <--- <ty
(Observe que k < 2n, e k < 2n no caso de tempos repetidos.) Podemos ver os
t; como eventos em que uma tarefa fica disponivel ou tem que terminar o seu
processamento. Os t; definem k—1 intervalos I; = [ti, ti11] parai € [k—1] com
duragao S; = ti11 — ti correspondente. Cada tarefa j pode ser executada no
intervalo T; caso I; C [ri, di]. Logo podemos modelar o problema via um grafo
direcionado bipartido com vértices T U I, sendo T = [n] o conjunto de tarefas
e I ={I; |1 € [k—1]} o conjunto de intervalos, e com arcos (j,1) caso tarefa j
pode ser executada no intervalo i. Para completar o grafo adicionaremos um
arco (s,j) de um vértice origem s para cada tarefa j, e um arco (i,t) de cada
intervalo para um vértice destino t. Um fluxo nesse grafo representa tempo,
e teremos capacidades p; entre s e tarefa j, S; entre tarefa j e intervalo i, e
mS$; entre T; e t, sendo mS; o tempo total disponivel durante o intervalo i. A
figura 1.18 mostra a construgao completa.

Logo P | pmtn, 7 | Liax pode ser resolvido em tempo O(mnlogL).

Com essa abordagem podemos resolver o problema original por busca binéria:
para cada valor do Lyax entre 0 e L testaremos se existe uma solucio tal que
cada tarefa executa no intervalo [ri, d; + Lyax]. Um limite superior simples é

59

1. Algoritmos em grafos

P2
P

Pn

Figura 1.18.: Problema de fluxo para resolver a versao de decisao do problema
P | pmtn» Ti | Lmax~

L = max;ti + Y i Pi— min; d; executando todas tarefas apds a liberacao da
ultima numa tinica maquina em ordem arbitraria.
1.4.7. Outros problemas de fluxo

Obtemos um outro problema de fluxo em redes introduzindo custos de trans-
porte por unidade de fluxo:

FLUXO DE MENOR CUSTO

Entrada Grafo direcionado G = (V, E) com capacidades ¢ € R‘f‘ e custos

E -y . Lo .
T E RLL‘ nos arcos, um vértice origem s € V, um vértice destino
teV,evalorveR,.

Solucdo Um fluxo s-t f com valor v.

Objetivo Minimizar o custo), g Cefe do fluxo.

ecE

Diferente do problema de menor fluxo, o valor do fluxo é fixo.

1.4.8. Exercicios

Exercicio 1.6
Mostra como podemos modificar o algoritmo de Dijkstra para encontrar o
caminho mais curto entre dois vértices num um grafo para encontrar o cami-

60

1.4. Fluxos em redes

nho com o maior gargalo entre dois vértices. (Dica: Enquanto o algoritmo
de Dijkstra procura o caminho com a menor soma de distancias, estamos
procurando o caminho com o maior capacidade minimo.)

61

1. Algoritmos em grafos

1.5. Emparelhamentos

Dado um grafo nao-direcionado G = (V, E), um emparelhamento é uma selecao
de arestas M C E tal que todo vértice tem no mdximo grau 1 em G’ = (V, M).
(Notagao: M = {ujv,uzvy,...}.) O nosso interesse em emparelhamentos é

maximizar o nimero de arestas selecionados ou, no caso as arestas possuem

pesos, maximizar o peso total das arestas selecionados.
Para um grafo com pesos ¢ : E — Q, seja ¢c(M) = ZeeM Ce 0 wvalor do
emparelhamento M.

EMPARELHAMENTO MAXIMO (EM)
Entrada Um grafo ndo-direcionado G = (V, E).

Solucdo Um emparelhamento M C E, i.e. um conjunto de arcos, tal que
para todos vértices v temos [N(v) " M| < 1.

Objetivo Maximiza |M]|.

EMPARELHAMENTO DE PESO MAXIMO (EPM)

Entrada Um grafo nao-direcionado G = (V,E,c) com pesos ¢ : E — Q
nas arestas.

Solucdo Um emparelhamento M C E.

Objetivo Maximiza o valor ¢(M) de M.

Um emparelhamento se chama perfeito se todo vértice possui vizinho em M.
Uma variagao comum do problema é

EMPARELHAMENTO PERFEITO DE PESO MINIMO (EPPM)

Entrada Um grafo nao-direcionado G = (V,E,c) com pesos ¢ : E — Q
nas arestas.

Solucao Um emparelhamento perfeito M C E, i.e. um conjunto de arcos,
tal que para todos vértices v temos [N(v) "M E 1.

Objetivo Minimiza o valor ¢(M) de M.

Observe que os pesos em todos problemas podem ser negativos. O problema de
encontrar um emparelhamento de peso minimo em G = (V, E, ¢) é equivalente

62

1.5. Emparelhamentos

com EPM em —G := (V, E, —c) (por qué?). Até EPPM pode ser reduzido para
EPM.

Teorema 1.7
EPM e EPPM sao problemas equivalentes.

Prova. Seja G = (V,E,c) uma instancia de EPM. Define um conjunto de
vértices V' que contém V e mais |V| novos vértices e um grafo completo G’ =
(V, V' x V' ¢’) com

—Ce casoe€E
0 caso contrario

Dado um emparelhamento M em G podemos definir um emparelhamento per-
feito M’ em G’: M’ inclui todas arestas em M. Além disso, um vértice em
V nao emparelhado em M serd emparelhado com o novo vértice correspon-
dente em V' com uma aresta de custo 0 em M’. Similarmente, os restantes
vértices nao emparelhados em V' sdo emparelhados em M’ com arestas de
custo 0 entre si. Pela construcao, o valor de M’ é ¢/(M’) = —c¢(M). Dado
um emparelhamento M’ em G’ podemos obter um emparelhamento M em G
com valor —c(M’) removendo as arestas que nao pertencem a G. Portanto,
um EPPM em G’ é um EPM em G.

Conversamente, seja G = (V,E,c) uma instancia de EPPM. Define C :=
14+) .celcel, novos pesos ¢, = C —ce e um grafo G’ = (V,E,c’). Para
emparelhamentos M e M, arbitrarios temos

cMa)—c(Mi) < Y ce—) ce=D) leel<C.

eckE eckE ecE
ce>0 ce<O0

Portanto, um emparelhamento de peso mdximo em G’ também é um empa-
relhamento de cardinalidade mdxima: Para |M;| < |M3| temos

¢'(My) = CIMy| —c(M1) < CIM4| + C —¢(M;) < CIM3z| —c(M3) =c¢’(M,).

Se existe um emparelhamento perfeito no grafo original G, entao o EPM em
G’ é perfeito e as arestas do EPM em G’ definem um EPPM em G. |

63

1. Algoritmos em grafos

Formulagdes com programacao inteira A formulacdo do problema do em-
parelhamento perfeito minimo para G = (V, E,c) é

minimiza Z CeXe (1.12)
eckt

sujeito a Z Xuy = 1, YveVv
UueEN (v)
Xe € B.

A formulagdo do problema do emparelhamento méximo é

maximiza Z CeXe (1.13)
ecE
sujeito a Z Xuv < 1 YweV
ueN(v)
Xe € B.

Observagao 1.13

A matriz de coeficientes de (1.12) e (1.13) é totalmente unimodular no caso bi-
partido (pelo teorema de Hoffman-Kruskal). Portanto: a solugao da relaxagao
linear é inteira. (No caso geral isso ndo é verdadeiro, K3 é um contra-exemplo,
com solugdo 6tima 3/2.). Observe que isso resolve o caso ponderado sem custo
adicional. O

Observagao 1.14
O dual da relaxacao linear de (1.12) é

CIM: maximiza Z Yv (1.14)
vev
sujeito a Yu + Yy < Cuvy Yuv € E
yy € R.

e o dual da relaxacao linear de (1.13)

MVC: minimiza Z Yy (1.15)
vev
sujeito a Yu + Yy = Cuvy Yuv e E
Yv € Ry
Com pesos unitdrios cy, = 1 e restringindo y, € B o primeiro dual é a

formulacao do conjunto independente méaximo e o segundo da cobertura por
vértices minima. Portanto, a observacao 1.13 rende no caso nao-ponderado:

64

1.5. Emparelhamentos

Teorema 1.8 (Berge, 1951)
Em grafos bi-partidos o tamanho da menor cobertura por vértices é igual ao
tamanho do emparelhamento méaximo.

Proposigao 1.4

Um subconjunto de vértices I C V de um grafo nao-direcionado G = (V,A) é
um conjunto independente sse V\I é um cobertura por vértices. Em particular
um conjunto independente méaximo I corresponde com uma cobertura por
vértices minima V \ L.

Prova. (Exercicio 1.8.) [| O

1.5.1. Aplicagoes

Alocacao de tarefas Queremos alocar n tarefas a n trabalhadores, tal que
cada tarefa é executada, e cada trabalhador executa uma tarefa. O custos de
execu¢ao dependem do trabalhar e da tarefa. Isso pode ser resolvido como
problema de emparelhamento perfeito minimo.

Particionamento de poligonos ortogonais

Teorema 1.9 (Sack e Urrutia [37, cap. 11,th. 1])

Um poligono ortogonal com n vértices de reflexo (ingl. reflex vertex, i.e., com
angulo interno maior que 7t), h buracos (ingl. holes) pode ser minimalmente
particionado em n — 1 — h + 1 retangulos. A varidvel 1 é o nimero maximo
de cordas (diagonais) horizontais ou verticais entre vértices de reflexo sem
interseccao.

O numero 1 é o tamanho do conjunto independente méximo no grafo de in-
tersecgao das cordas: cada corda é representada por um vértice, e uma aresta
representa a duas cordas com interse¢ao. Pela proposicao 1.6 podemos obter
uma cobertura minima via um emparelhamento maximo, que é o complemento
de um conjunto independente maximo. Podemos achar o emparelhamento em
tempo O(n®/2) usando o algoritmo de Hopcroft-Karp, porque o grafo de in-
terseccao é bi-partido (por qué?).

1.5.2. Grafos bi-partidos

Na formulacao como programa inteira a solucao do caso bi-partido é mais facil.
Isso também ¢é o caso para algoritmos combinatoriais, e portanto comegamos
estudar grafos bi-partidos.

65

1. Algoritmos em grafos

8

Figura 1.19.: Esquerda: Poligono ortogonal com vértices de reflexo (pontos) e
cordas (pontilhadas). Direita: grafo de intersec¢ao.

i

Figura 1.20.: Redugao do problema de emparelhamento méximo para o pro-
blema do fluxo maximo

Reducao para o problema do fluxo maximo

Teorema 1.10
Um EM em grafos bi-partidos pode ser obtido em tempo O(mn).

Prova. Introduz dois vértices s, t, liga s para todos vértices em V7, os vértices
em V7 com vértices em V> e os vértices em V> com t, com todos os pesos
unitdrios. Aplica o algoritmo de Ford-Fulkerson para obter um fluxo méximo.
O ntimero de aumentos é limitado por n, cada busca tem complexidade O(m),
portanto o algoritmo de Ford-Fulkerson termina em tempo O(mn). |

Teorema 1.11
O valor do fluxo méximo é igual a cardinalidade de um emparelhamento
maximo.

66

1.5. Emparelhamentos

Prova. Dado um emparelhamento mdximo M = {v11v21,...,VinVan}, pode-
mos construir um fluxo com arcos svii, v1iv2i e vait com valor [M|.

Dado um fluxo maximo, existe um fluxo integral equivalente (veja lema (1.13)).
Na construcao acima os arcos possuem fluxo 0 ou 1. Escolhe todos arcos entre
Vi e V; com fluxo 1. Nao existe vértice com grau 2, pela conservagao de fluxo.
Portanto, os arcos formam um emparelhamento cuja cardinalidade é o valor
do fluxo. |

Solugdao nao-ponderado combinatorial Um caminho P = vivovs...vy é
alternante em relacdo a M (ou M-alternante) se vivii1 € M sse vi;1viz2 € M
para todos 1 < i < k—2. Um vértice v € V é livre em relagao a M se ele
tem grau 0 em M, e emparelhado caso contrario. Um arco e € E é livre em
relagdo a M, se e € M, e emparelhado caso contrario. Escrevemos |P| =k — 1
pelo comprimento do caminho P.

Observagao 1.15

Caso temos um caminho P = vivyvs ...V 1 que é M-alternante com vy é

Vak41 livre, podemos obter um emparelhamento M \ (PN M) U (P \ M) de

tamanho [M| —k + (k — 1) = [M| + 1. Notacao: Diferenca simétrica M & P =

(M\P)U(P\M). A operagio M @ P é um aumento do emparelhamento M.
O

Teorema 1.12 (Hopcroft e Karp [27])

Seja M* um emparelhamento maximo e M um emparelhamento arbitrario. O
conjunto M@®M* contém pelo menos k = |[M*|—|M| caminhos M-aumentantes
disjuntos (de vértices). Um deles possui comprimento menor que [V|/k — 1.
Prova. Considere os componentes de G em relacao aos arcos M @ M*. Cada
vértice possui no maximo grau 2. Portanto, os componentes sao vértices li-
vres, caminhos simples ou ciclo. Os caminhos e ciclos possuem alternadamente
arestas de M e M*| logo os ciclos tem comprimento par. Os caminhos de com-
primento impar sao ou M-aumentantes ou M*-aumentantes, mas o segundo
caso é impossivel, porque M* é maximo. Logo

IM*\ M| =M*|—M*NM|=M|—-M*NM|+k =M\ M*|+k

e portanto M @& M* contém k arcos mais de M* que de M. Isso mostra que
existem pelo menos |[M*| — |M| caminhos M-aumentantes, porque somente os
caminhos de comprimento impar possuem exatamente um arco mais de M*.
Pelo menos um desses caminhos tem que ter um comprimento menor ou igual
que |V|/k — 1, porque no caso contrario eles contém em total mais que |V]
vértices. |

67

1. Algoritmos em grafos

Corolério 1.3 (Berge [5])
Um emparelhamento é maximo sse nao existe um caminho M-aumentante.

Rascunho de um algoritmo:

Algoritmo 1.6 (Emparelhamento maximo)
Entrada Grafo nao-direcionado G = (V, E).

Saida Um emparelhamento maximo M.

1 M=90

2 while (existe um caminho M aumentante P) do
3 M:=M®oP

4 end while

5 return M

Problema: como achar caminhos M-aumentantes de forma eficiente?
Observagao 1.16

Um caminho M-aumentante comega num vértice livre em V7 e termina num
vértice livre em V>. Idéia: Comecga uma busca por largura com todos vértices
livres em Vj. Segue alternadamente arcos livres em M para encontrar vizi-
nhos em V3 e arcos em M, para encontrar vizinhos em V7. A busca para ao
encontrar um vértice livre em V, ou ap6s de visitar todos vértices. Ela tem
complexidade O(m + n). O

Teorema 1.13

O problema do emparelhamento maximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(mn).

Prova. Ultima observacao e o fato que o emparelhamento maximo tem ta-

manho O(n). |
Observagao 1.17
O 1ltimo teorema é o mesmo que teorema (1.10). O

Observagao 1.18

Pelo teorema (1.12) sabemos que existem varios caminhos M-alternantes dis-
juntos (de vértices) e nos podemos aumentar M com todos eles em paralelo.
Portanto, estruturamos o algoritmo em fases: cada fase procura um conjunto
de caminhos aumentantes disjuntos e aplicé-los para obter um novo empare-
lhamento. Observe que pelo teorema (1.12) um aumento com o maior conjunto
de caminhos M-alternantes disjuntos resolve o problema imediatamente, mas
nao sabemos como achar esse conjunto de forma eficiente. Portanto, procu-
ramos somente um conjunto maximo de caminhos M-alternantes disjuntos de
menor comprimento.

68

1.5. Emparelhamentos

Podemos achar um conjunto desse tipo apdés uma busca por profundidade
da seguinte maneira usando o DAG (grafo direcionado aciclico) definido pela
busca por profundidade. (i) Escolhe um vértice livre em V;. (ii) Segue os
predecessores para achar um caminho aumentante. (iii) Coloca todos vértices
em uma fila de dele¢do. (iv) Processa a fila de delecao: Até a fila é vazia,
remove um vértice dela. Remove todos arcos adjacentes no DAG. Caso um
vértice sucessor apds de remogao de um arco possui grau de entrada 0, coloca
ele na fila. (v) Repete o procedimento no DAG restante, para achar outro
caminho, até nao existem mais vértices livres em V,. A nova busca ainda
possui complexidade O(m). O

O que ganhamos com essa nova busca? Os seguintes dois lemas dao a resposta:

Lema 1.27
Em cada fase o comprimento de um caminho aumentante minimo aumenta
por pelo menos dois.

Lema 1.28
O algoritmo termina em no méximo /n fases.

Teorema 1.14

O problema do emparelhamento maximo nao-ponderado em grafos bi-partidos
pode ser resolvido em tempo O(my/m).

Prova. Pelas lemas 1.27 e 1.28 e a observacao que toda fase pode ser com-
pletada em O(m). [|

Usaremos outro lema para provar os dois lemas acima.

Lema 1.29

Seja M um emparelhamento, P um caminho M-aumentante minimo, e Q um
caminho M @ P-aumentante. Entao [Q| > [P|+2|P N Q]. (PN Q denota as
arestas em comum entre P e Q.)

Prova. Caso P e Q nao possuem vértices em comum, Q é M-aumentante,
PN Q =0 e a desigualdade é conseqiiéncia da minimalidade de P.

Caso contrério, P e Q possuem um vértice em comum, e logo também uma
aresta, senao apods da aplicagao de Q um vértice tem grau dois. P& Q consiste
em dois caminhos, e eventualmente um cole¢ao de ciclos. Os dois caminhos
sao M-aumentantes, pelas seguintes observacoes:

1. O inicio e termino de P é livre em M, porque P é M-aumentante.

2. O inicio e termino de Q é livre em M.: eles néo pertencem a P, porque
sao livres em M & P.

69

1. Algoritmos em grafos

O (—] —] U

O (—1 (—1 L]
(a) Grafo com emparelhamento M (em negrito) e um caminho
M-aumentante P (em vermelho).

O0—0 - —0 - O—_

U (—1 (—1 il
(b) O mesmo grafo com emparelhamento M @ P (em negrito) e um caminho
M @ P-aumentante Q (em vermelho).

A i

) O conjunto de arestas P @ Q (em negrito).

Figura 1.21.: Ilustracao do lema 1.29.

3. Nenhum outro vértice de P & Q é livre em relagao a M: P s6 contém
dois vértices livres e Q s6 contém dois vértices livres em Q \ P.

4. Temos dois caminhos M-aumentantes, comegando com um vértice livre
em Q e terminando com um vértice livre em P. O parte do caminho
Q em Q \ P é M-alternante, porque as arestas livres em M @ P sao
exatamente as arestas livres em M. O caminho Q entra em P e sai de
P com arestas livres, porque todo vértice em P estd emparelhado em
M @ P. Portanto os dois caminhos em P & Q sao M-aumentantes.

Os dois caminhos M-aumentantes em P @ Q tem que ser maiores que |P|. Com
isso temos [P @ Q| > 2|P| e

QI =[P QI+2[PNQI—IPI > [P[+2[PNQl

|
Prova. (dolema 1.27). Seja S o conjunto de caminhos M-aumentantes da fase
anterior, e P um caminho aumentante. Caso P é disjunto de todos caminhos
em S, ele deve ser mais comprido, porque S é um conjunto maximo de caminhos
aumentantes. Caso P possui um vértice em comum com algum caminho em

S, ele possui também um arco em comum (por qué?) e podemos aplicar
lema 1.29.]

70

— =

— O © 00O Uk Wi =

1.5. Emparelhamentos

Prova. (do lema 1.28). Seja M* um emparelhamento méximo e M o empa-
relhamento obtido apds de v/n/2 fases. O comprimento de qualquer caminho
M-aumentante é no minimo /n, pelo lema 1.27. Pelo teorema 1.12 existem
pelo menos |M*| — |[M| caminhos M-aumentantes disjuntos de vértices. Mas
entao |M*| — IM| < \/n, porque no caso contrario eles possuem mais que n
vértices em total. Como o emparelhamento cresce pelo menos um em cada
fase, o algoritmo executa no maximo mais /1 fases. Portanto, o nimero total
de fases é O(y/n). [|
O algoritmo de Hopcroft-Karp é o melhor algoritmo conhecido para encontrar
emparelhamentos méximos em grafos bipartidos ndo-ponderados esparsos®.
Para subclasses de grafos bipartidos existem algoritmos melhores. Por exem-
plo, existe um algoritmo randomizado para grafos bipartidos regulares com
complexidade de tempo esperado O(nlogn) [22].

Sobre a implementacdo A seguir supomos que o conjunto de vértices é
V = [1,n] e um grafo G = (V, E) bi-partido com particdo V; U V,. Podemos
representar um emparelhamento usando um vetor mate, que contém, para
cada vértice emparelhado, o indice do vértice vizinho, e 0 caso o vértice é
livre.

O nicleo de uma implementacao do algoritmo de Hopcroft e Karp é descrito
na observagao 1.18: ele consiste numa busca por largura até encontrar um ou
mais caminhos M-alternantes minimos e depois uma fase que extrai do DAG
definido pela busca um conjunto maximo de caminhos disjuntos (de vértices).
A busca por largura comega com todos vértices livres em V;. Usamos um
vetor H para marcar os arcos que fazem parte do DAG definido pela busca
por largura® e um vetor m para marcar os vértices visitados.

search_paths(M) :=
for all veV do m, :=false
for all e€E do H. :=false

U;:={veV;|vlivre}

do
{ determina vizinhos em U; via arestas livres}
Uz ::(Z)
for all ueU; do

my = true

4Feder e Motwani [16, 17] propuseram um algoritmo em O(y/nm(2—1log,, m)) que é melhor
em grafos densos.
5H, porque o DAG se chama drvore hingara na literatura.

71

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

CO O UL i W N+

— ==
N = OO

1. Algoritmos em grafos

for all wek, w¢M do
if not m, then
Hyy = true
W :=UUv
end if
end for
end for

{ determina vizinhos em U; via arestas emparelhadas }
found := false { pelo menos um caminho encontrado?
U] = @
for all ue U, do
m, = true
if (u livre) then
found := true
else
v := mate[u]
if not m, then
Hyy := true
U;:=uU;uv
end if
end for
end for
while (not found)
end
Ap6s da busca, podemos extrair um conjunto maximo de caminhos M-alternantes
minimos disjuntos. Enquanto existe um vértice livre em V3, nos extraimos um
caminho alternante que termina em v como segue:

extract_path(v) :=
P:=v
while not (veV; and v livre) do
if veV,
v := mate[V]
else
v:= escolhe {u|Hy,,uv & M}
(ou remove P e falha caso nao existe predecessor em H)
end if
P:=vP
end while

72

1.5. Emparelhamentos

13 remove o caminho e todos vértices sem predecessor
14 end while
15 end

Exemplo 1.5

Segue um exemplo de aplicagao do algoritmo de Hopcroft-Karp.

Grafo original, arvore Hungara primeira iteragao e emparelhamento
resultante:

|

Arvore Hungara segunda iteragao e emparelhamento resultante:

st

Arvore Huingara terceira iteragdo e emparelhamento resultante:

i

Emparelhamentos e coberturas

73

1. Algoritmos em grafos

Proposigao 1.5

Seja G = (S U T,E) um grafo bipartido e M C E um emparelhamento em G.
Seja R o conjunto de todos vértices livres em S e todos vértices alcangaveis
por uma busca na drvore Hungara (i.e. via arestas livres de S para T e arestas
do emparelhamento de T para S.). Entdo (S \ R) U (T N R) é uma cobertura
por vértices em G.

Prova. Seja u,v € E uma aresta nao coberta. Logo u € S\ (S\R) =R
eveT\(TNR) =T\R. Caso uv € M, uv é parte da arvore Hingara é
v € R, uma contradigao. Mas caso uv € M, vu é parte da arvore Hingara e
v precede u, logo v € R, novamente uma contradigao. |

A préximo proposigdo mostra que no caso de um emparelhamento méximo
obtemos uma cobertura minima.

Proposigao 1.6
Seja G = (S U TJE). Caso M é um emparelhamento maximo o conjunto
(S\R)U (TN R) é uma cobertura minima.

Prova. Como M é maximo nao existe caminho M-aumentante, e logo T N R
contém somente vértices emparelhados. Caso [T N R| = v, R também contém

exatamente v vértices emparelhados em S. Além disso R contém [S| — |M]|
vértices livres em S. Logo S\ Rl = |S|—=(IS|—=M|]) —v = M| —v e |[(S\
R) U (T N R)| = |[M|, i.e. a cobertura possui a mesma cardinalidade que o

emparelhamento. Mas o tamanho de qualquer emparelhamento é um limite
inferior para a cobertura minima, porque ela tem que conter pelo menos um
vértice da cada aresta emparelhada. Logo (S \ R) U (T NR) é uma cobertura
minima. |

Solucdo ponderada em grafos bi-partidos Dado um grafo G = (S U T, E)
bipartido com pesos ¢ : E — Q. queremos achar um emparelhamento de maior
peso. Escrevemos V =S U T para o conjunto de todos vértices em G.

Observagao 1.19

O caso ponderado pode ser restrito para emparelhamentos perfeitos: caso
S e T possuem cardinalidade diferente, podemos adicionar vértices, e depois
completar todo grafo com arestas de custo 0. O problema de encontrar um em-
parelhamento perfeito maximo (ou minimo) em grafos ponderados é conhecido
pelo nome “problema de alocagao” (ingl. assignment problem). %

Observagao 1.20
A redugao do teorema 1.10 para um problema de fluxo méximo nao se aplica
no caso ponderado. Mas, com a simplificacao da observacao 1.19, podemos

74

1.5. Emparelhamentos

]
0 A%
]
v
]
]
[|]
M| —v{ [| O
[|]

Figura 1.22.: Tlustragao da prova da proposigao 1.6.

reduzir o problema no caso ponderado para um problema de fluxo de menor
custo: a capacidade de todas arestas é 1, e o custo de transportagdo sdo os
pesos das arestas. Como o emparelhamento é perfeito, procuramos um fluxo
de valor |V|/2, de menor custo. O

O dual do problema 1.15 é a motivacao para

Definicao 1.3

Um rotulamento é uma atribuicaoy : V. — R.. Ele é vidvel caso y,, +Yv > Ce
para todas arestas e = (u,v). (Um rotulamento vidvel é c-cobertura por
vértices.) Uma aresta é apertada (ingl. tight) caso y + yy = ce. O subgrafo
de arestas apertadas é Gy = (V,;E’,c) com E/ ={e € E | e apertada em y}.

Pelo teorema forte de dualidade e o fato que a relaxacao linear dos sistemas
acima possui uma solugao integral (ver observacao 1.13) temos

Teorema 1.15 (Egervary [15])

Para um grafo bi-partido G = (S U T, E, ¢) com pesos nao-negativos ¢ : E — Q.
nas arestas, o maior peso de um emparelhamento perfeito é igual ao peso da
menor c-cobertura por vértices.

O método hingaro Aplicando um caminho M-aumentante P = (viva ... von41)
produz um emparelhamento de peso ¢(M)+3_; ;10ar Cvivier — 21 par Cvivis: -
Isso motiva a definicao de uma arvore hingara ponderada. Para um empare-
lhamento M, seja Hyp o grafo direcionado com as arestas e € M orientadas
de T para S com peso le := We, e com as restantes arestas e € E\ M ori-
entadas de S para T com peso le := —w,. Com isso a aplicacao do caminho

(6]

1. Algoritmos em grafos

M-aumentante P produz um emparelhamento de peso ¢(M) — 1(P) em que
LP) =3 ;cicon Wivi,s € 0 comprimento do caminho P.
Com isso podemos modificar o algoritmo para emparelhamentos maximos para

Algoritmo 1.7 (Emparelhamento de peso maximo)
Entrada Um grafo ndo-direcionado ponderado G = (V, E, c).

Saida Um emparelhamento de maior peso c(M).

1 M=0

while (existe um caminho M aumentante P) do
encontra o caminho M aumentante minimo P em Hp
caso l(P)>0: return M;
M =Mo®P

end while

return M

N O U W N

Chamaremos um emparelhamento M eztremo caso ele possui o maior peso
entre todos emparelhamentos de tamanho |M|.

Observagao 1.21

O grafo Hyp de um emparelhamento extremo M nao possui ciclo (par) ne-
gativo. Isso seria uma contradicdo com a maximalidade de M. Portanto
podemos encontrar o caminho minimo no passo 3 do algoritmo usando o al-
goritmo de Bellman-Ford em tempo O(mn). Com isso a complexidade do
algoritmo é O(mn?). O

Observagao 1.22

Lembrando Bellman-Ford: Seja di(t) a distdncia minima entre s e t com um
caminho usando no maximo k arcos ou oo caso tal caminho nao existe. Temos

di+1(t) = min{dy(t), min di(u)+Uu,t)}
(u,t)eA

com do(t) = 0 caso t é um vértice livre em S e do(t) = oo caso contririo. O
algoritmo se aplica igualmente para as distancias de um conjunto de vértices,
como o conjunto de vértices livres em S. A atualizacdo de k para k + 1 é
possivel em O(m) e como k < 1 o algoritmo possui complexidade O(nm). ¢

Teorema 1.16
Cada emparelhamento encontrado no algoritmo 1.7 é extremo.

Prova. Por indugio sobre [M|. Para M = () o teorema é correto. Seja M
um emparelhamento extremo, P o caminho aumentante encontrado pelo algo-
ritmo 1.7 e N um emparelhamento de tamanho [M|+1 arbitrério. Como |N| >

76

1.5. Emparelhamentos

IM|, M UN contém uma componente que é um caminho Q M-aumentante
(por um argumento similar com aquele da prova do teorema de Hopcroft-
Karp 1.12). Sabemos 1({Q) > 1(P) pela minimalidade de P. N & Q é um
emparelhamento de cardinalidade M| (Q é um caminho com arestas em N e
M com uma aresta em N a mais), logo ¢(N @ Q) < ¢(M). Com isso temos

c(N)=c(Ne&Q)-UQ) <cM)—-1P)=c(M&P)

(observe que o comprimento 1(Q) é definido no emparelhamento M). |

Proposigao 1.7
Caso nao existe caminho M-aumentante com comprimento negativo no algo-
ritmo 1.7, M é méaximo.

Prova. Supde que existe um emparelhamento N com c(N) > c¢(M). Logo
IN| > |[M| porque M é possui o maior peso entre todos emparelhamentos de
cardinalidade no maximo |M|. Pelo teorema de Hopcroft-Karp, existem |[N| —
IM| caminhos M-aumentantes disjuntos de vértices em N @ M. Nenhum deles
tem comprimento negativo, pelo critério de parada do algoritmo. Portanto
c(N) < ¢(M), uma contradicao. |

Fato 1.1

E possivel encontrar o caminho minimo no passo 3 em tempo O(m + nlogn)
usando uma transformagao para distancias positivas e aplicando o algoritmo
de Dijkstra. Com isso um algoritmo em tempo O(n(m + nlogn)) é possivel.

1.5.3. Emparelhamentos em grafos nao-bipartidos

O caso nao-ponderado Dado um grafo nao-direcionado G = (V;E) e um
emparelhamento M, podemos simplificar a arvore hingara para um grafo
direcionado D = (V,; A) com A ={(u,v) | Ix € V:ux € E,xv € M}. Qualquer
passeio M-alternante entre dois vértices livres em G corresponde com um
caminho M-alternante em D.

O problema no caso nao-bipartido sao lagos impares. No caso bi-partido,
todo lago é par e pode ser eliminado sem consequéncias: de fato o caminho
M-alternante mais curto nao possui lago. No caso nao bi-partido nao todo
caminho no grafo auxiliar corresponde com um caminho M-alternante no grafo
original. O caminho v{Vv3Vv5v7Vve corresponde com o caminho M-alternante
V1V2V3V4V5V6V7VgVoV19, Mas 0 caminho vivgCgVsv7ve que corresponde com
0 passeio ViVoVgV7VeVaV5VeV7VgVoVio nao é um caminho M-alternante que
aumento o emparelhamento. O problema é que o lago impar vgv4vsvg nao
pode ser eliminado sem consequéncias.

7

1. Algoritmos em grafos

Figura 1.23.: Grafo com emparelhamento e grafo auxiliar.

Tabela 1.4.: Resumo emparelhamentos

Cardinalidade Ponderado
Bi-partido n\/) 3] Omm+n?logn) [31, 33]
mf l°glg‘g logln=/m)y 117]
Geral floglggém) [23, 19] O(n?) [13] O(mn +n?logn) [21]

1.5.4. Exercicios

Exercicio 1.7
E possivel somar uma constante ¢ € R para todos custos de uma instancia do
EPM ou EPPM, mantendo a otimalidade da solugao?

Exercicio 1.8
Prova a proposicao 1.4.

78

2. Tabelas hash

Em hashing nosso interesse é uma estrutura de dados H para gerenciar um
conjunto de chaves sobre um universo U e que oferece as operagoes de um
diciondrio:

e Inser¢ao de uma chave ¢ € U: insert(c,H)
e Delecao de uma chave ¢ € U: delete(c,H)
e Teste da pertinéncia: Chave ¢ € H? lookup(c,H)

Uma caracteristica do problema é que tamanho [U| do universo de chaves
possiveis pode ser grande, por exemplo o conjunto de todos strings ou todos
nimeros inteiros. Portanto usar a chave como indice de um vetor de booleano
nao é uma opgao. Uma tabela hash é um alternativa para outros estruturas
de dados de dicionarios, p.ex. arvores. O principio de tabelas hash: aloca
uma tabela de tamanho m e usa uma fun¢do hash para calcular a posigao de
uma chave na tabela. Como o tamanho da tabela hash é menor que o nimero
de chaves possiveis, existem chaves com h(ci) = h(cz), que geram colisdes.
Temos dois métodos para lidar com isso:

e Hashing perfeito: Escolhe uma fungao hash, que para um dado conjunto
de chaves nao tem colisoes. Isso é possivel se o conjunto de chaves é
conhecido e estatico.

e Invente outro método de resolucao de colisoes.

2.1. Hashing com listas encadeadas

Define uma fun¢do hash h : U — [m]. Mantemos uma colecdo de m listas
loy...,limn_1 € a lista l; contém as chaves ¢ com valor hash h(c) =1i. Supondo
que a avaliacdo de h é possivel em O(1), a inser¢do custa O(1), e o teste é
proporcional ao tamanho da lista.

Para obter uma distribuicao razoavel das chaves nas listas, supomos que h é
uma funcao hash simples e uniforme:

Prlh(c) =il = 1/m. (2.1)

79

O O U W N+

2. Tabelas hash

Seja ny = [li| o tamanho da lista i e cj; := Pr[h(i) = j] a varidvel aleatéria
que indica se chave j pertence a lista i. Temos n; = Zl<j<n Cji € com isso

End=El Y cil= > Elil= Y Prlh(g) =i =n/m.

1<j<n 1<i<n 1<j<n

O valor «:=n/m é a fator de ocupa¢do da tabela hash.

insert (c,H) :=
insert (C71h(c))

lookup (c,H) :=
lookup (c,ln(c))

delete(c,H) :=
delete (c,ln(e))

Teorema 2.1
Uma busca sem sucesso precisa tempo esperado de O(1 +).

Prova. A chave ¢ tem a probabilidade 1/m de ter um valor hash i. O
tamanho esperado da lista i é «. Uma busca sem sucesso nessa lista precisa
tempo O(«). Junto com a avaliacdo da funcdo hash em ©(1), obtemos tempo
esperado total O(1 + «). []

Teorema 2.2
Uma busca com sucesso precisa tempo esperado de (1 + o).

Prova. Supomos que a chave ¢ é uma das chaves na tabela com probabilidade
uniforme. Entdo, a probabilidade de pertencer a lista i (ter valor hash i) é
ni/n. Uma busca com sucesso toma tempo ©(1) para avaliacdo da fungdo
hash, e mais um nimero de operagoes proporcional a posi¢ao p da chave na
sua lista. Com isso obtemos tempo esperado ©(1 + E[p]).

Para determinar a posigao esperada na lista, E[p], seja c1,...,cn a sequéncia
em que a chaves foram inseridas. Supondo que inserimos as chaves no inicio
da lista, E[p] é um mais que o nimero de chaves inseridos depois de ¢ na
mesma lista.

Seja Xi; um varidvel aleatéria que indica se chaves c¢; e ¢j tem o mesmo valor
hash. E[Xi;] = Pr[h(ci) = h(cy)] = Z]gkngr[h(Ci) = k] Prlh(cj) = k] =
1/m. Seja p;i a posicdo da chave c; na sua lista. Temos

Epd =E[1+) Xyl=T1+) EXyl=1+n—i)/m

ji>1i jii>i

80

2.1. Hashing com listas encadeadas

e para uma chave aleatéria c

Epl= > 1/mEpd= > 1/n(1+n—1i)/m)

1<i<n 1<i<n

=14+n/m—(n+1)/2m)=1+«/2 — /(2n).
Portanto, o tempo esperado de uma busca com sucesso é
O(1+Ep) =02+ /2 —/2n) =O(1 + «).
|

Selecdo de uma funcao hash Para implementar uma tabela hash, temos
que escolher uma fungéo hash, que satisfaz (2.1). Para facilitar isso, supomos
que o universo de chaves é um conjunto U = [u] de nimeros inteiros. (Para
tratar outro tipos de chave, costuma-se converté-los para nimeros inteiros.)
Se cada chave ocorre com a mesma probabilidade, h(i) = 1 mod m é uma
funcao hash simples e uniforme. Essa abordagem é conhecida como método
de divisao. O problema com essa fungao na pratica é que nao conhecemos a
distribuicao de chaves, e ela provavelmente nao é uniforme. Por exemplo, se
m é par, o valor hash de chaves pares é par, e de chaves impares é impar, e se
m = 2¥ o valor hash consiste nos primeiros k bits. Uma escolha que funciona
na pratica é um numero primo “suficientemente” distante de uma poténcia de
2.

O método de multiplicacao define

h(c) = [m{Ac}].

O método funciona para qualquer valor de m, mas depende de uma escolha
adequada de A € R. Knuth propos A =~ (v/5—1)/2.

Hashing universal Outra idéia: Para qualquer funcao hash h fixa, sempre
existe um conjunto de chaves, tal que essa fungao hash gera muitas colisoes.
(Em particular, um “adversario” que conhece a funcao hash pode escolher
chaves c, tal que h(c) = const.. Para evitar isso podemos escolher uma funcao
hash randomica de uma familia de funcoes hash.

Uma familia H de funcdes hash U — [m] é universal se

{h € H|h(er) =h(e2)}l =[H/m

ou equivalente
Prlh(c1) = h(c2)l =1/m

para qualquer par de chaves cq,cC3.

81

2. Tabelas hash

Teorema 2.3
Se escolhemos uma funcao hash h € H uniformemente, para uma chave ar-
bitrdria ¢ o tamanho esperado de ly () é

e x,casoc € H, e
e 1+, casoc € H.

Prova. Para chaves c1,c; seja Xij = [h(cq1) = h(c2)] e temos
E[Xy;] = Pr[Xy; = 1] =Pr[h(ci) =h(cz)l =1/m

pela universalidade de H. Para uma chave fixa c seja Y. o ntimero de colisoes.

E[Y.] =E[> x} =) EXeed<) 1/m

c’eH c’eH c’eH
c’'#c c’'#c c’'#c

Para uma chave ¢ € H, o tamanho da lista é Y, e portanto o tem tamanho
esperado E[Y.] < n/m = «. Caso ¢ € H, o tamanho da lista é 1+ Y. e com
ElY.] = (n—1)/m esperadamente

T+n—1)/m=T+a—1/m< 1+ .

Um exemplo de um conjunto de fun¢ées hash universais: Sejac = (coy...,Cr)m
uma chave na base m, escolhe a = (ag,..., a;)m randomicamente e define

ha: Z ciaj mod m.

0<i<r

Hashing perfeito Hashing é perfeito sem colisoes. Isso podemos garantir so-
mente caso conhecemos a chaves a serem inseridos na tabela. Para uma funcao
aleatéria de uma familia universal de funcoes hash para uma tabela hash de ta-
manho m, o niimero esperado de colisoes é E[Z#j Xy = Z#j E[Xy] < n?/m.
Portanto, caso esolhemos uma tabela de tamanho m > n? o nimero esperado
de colisdes é menos que um. Em particular, para m > 2n? a probabilidade de

uma colisao é P[Z,-L7éj Xy > 0] < Z#j PXy =1]= n?/m<1/2.

82

0 O Uik WK

—_ =
W= OO

2.2. Hashing com enderecamento aberto

2.2. Hashing com enderecamento aberto

Uma abordagem para resolucao de colisoes, chamada enderecamento aberto, é
escolher outra posi¢do para armazenar uma chave, caso h(c) é ocupada. Uma
estratégia para conseguir isso € procurar uma posi¢ao livre numa permutagao
de todos indices restantes. Assim garantimos que um insert tem sucesso en-
quanto ainda existe uma posicao livre na tabela. Uma fungao hash h(c,1i) com
dois argumentos, tal que h(c,0),...,h(c,m — 1) é uma permutacao de [m],
representa essa estratégia.

insert (c,H) :=

for i in [m]
if H[h(c,1) = free
Hlh(c,i)]=c

return

lookup (c,H) :=
for i in [m]
if Hfh(c,1)] = free
return false
if H[h(c,1)] =c
return true
return false
A fungéo h(c,1) é uniforme, se a probabilidade de uma chave randémica ter
associada uma dada permutagao é 1/m!. A seguir supomos que h é uniforme.

Teorema 2.4
As funcoes lookup e insert precisam no méaximo 1/(1 — «) testes caso a chave
nao esta na tabela.

Prova. Seja X o numero de testes até achar uma posicao livre. Temos

EX = ZiPr[X =1 = ZZPr[X =1 = ZPr[X > 1.

i>1 i>1§>1 i>1
Com T; o evento que o teste 1 ocorre e a posigao i é ocupada, podemos escrever
Pr(X >i] = Pr[TiN---NTi_1] = Pr[T1] Pr[T2|Th] Pr[T3|Tq, T2] - - - Pr[Ti 1 [Ty, ..., Ti 2]

Agora Pr[T;] = n/m, e como h é uniforme Pr[T2|Ty] =n—1/(m—1) e em
geral
Pr[Ti|T,... Tkql=n—=k+1)/(m—k+1) <n/m=«.

83

2. Tabelas hash

Portanto Pr[X > 1] < ot~ T e

ZPrX>1 <Zoc :Z ot =1/(1—).

i>1 i>1 i>0
[|
Lema 2.1
Para i < j, temos H; — Hj < In(i) — In(j).
Prova.
i+1 1
Hi —H; < J dx =In(i) — In(j)
jp1 x— 1
[|

Teorema 2.5

Caso « < 1 a funcdo lookup precisa esperadamente 1/aln1/(1 — «) testes
caso a chave estd na tabela, e cada chave tem a mesma probabilidade de ser
procurada.

Prova. Seja c a i-gésima chave inserida. No momento de insercao temos
o = (i—1)/m e o nimero esperado de testes T até encontrar a posigao livre
foi 1/(1—(i—1)/m) = m/(m — (1— 1)), e portanto o nimero esperado de
testes até encontrar uma chave arbitraria é

T=1/m) m/(m—(i-1)=1/a Y 1/(m—i)=1/a(Hn—Hmn »)

1<i<n 0<i<n
e com Hy, —Hpon <In(m) —In(m —n) temos
T =1/a(Hn —Hm_n) < 1/x(In(m) —In(m —n)) = 1/xIn(1/(1 — «)).

|
Remover elementos de uma tabela hash com enderecamento aberto é mais
dificil, porque a busca para um elemento termina ao encontrar uma posicao
livre. Para garantir a corretude de lookup, temos que marcar posigoes como
“removidas” e continuar a busca nessas posi¢oes. Infelizmente, nesse caso,
as garantias da complexidade nao mantem-se — apds uma série de delegoes e
insergoes toda posicao livre serd marcada como “removida” tal que delete e
lookup precisam n passos. Portanto o enderecamento aberto é favoravel s se
temos nenhuma ou poucas delegoes.

84

O © 00O Uk W+

—_

Tk W N =

2.3. Cuco hashing

Funcoes hash para enderecamento aberto
e Linear: h(c,i) = h(c) +1 mod m
e Quadratica: h(c,i) =h(c)+ci1i+c2i? mod m
e Hashing duplo: h(c,i) = hq(c) +1ihz(c) mod m

Nenhuma das funcoes é uniforme, mas o hashing duplo mostra um bom de-
sempenho na pratica.

2.3. Cuco hashing

Cuco hashing é outra abordagem que procura posigoes alternativas na tabela
em caso de colisoes, com o objetivo de garantir um tempo de acesso constante
no pior caso. Para conseguir isso, usamos duas func¢ées hash h; e hy, e inse-
rimos uma chave em uma das duas posi¢oes hq(c) ou hy(c). Desta forma a
busca e a delegdo possuem complexidade constante O(1):

lookup (¢ ,H) :=
if Hhy(c)]=c or Hhy(c)l =¢

return true

return false

delete(c,H) :=
if Hhi(c)l=c
H[hq(c)] := free
if Hhy(c)] =c
Hlh,(c)] := free
Inserir uma chave é simples, caso uma das posicoes alternativas é livre. No
caso contrario, a solugao do cuco hashing é comportar-se como um cuco com
ovos de outras aves que joga-los fora do seu “ninho”: “insert” ocupa a posicao
de uma das duas chaves. A chave “jogada fora” serd inserida novamente na
tabela. Caso a posicao alternativa dessa chave é livre, a inser¢do termina.
Caso contrario, o processo se repete. Esse procedimento termina apds uma
série de reinsercoes ou entra num lago infinito. Nesse tltimo caso temos que
realocar todas chaves com novas fungoes hash.

insert (c,H) :=
if Hhy(c)]=c or Hhy(c)]l=¢
return

p:=hi(c)
do n vezes

85

2. Tabelas hash

if Hip] = free
Hlp]l :=c¢
return
swap (c,Hlp])
{ escolhe a outra posicao da chave atual }
if P= hy (C)
p = hz(c)
else
p:=hi(c)
rehash (H)
insert (c,H)
Uma maneira de visulizar uma tabela hash com cuco hashing, é usar o grafo
cuco: Caso foram inseridos as chaves c1, ..., cn na tabela nas posi¢oes p1y ..., Pn,
o grafo é G = (V;A), com V = [m] é (pi,hz(ci)) € A caso hi(ci) = pi
e (pi,hi(ci)) € A caso hy(ci) = pi, i.e., os arcos apontam para a posi¢io
alternativa. O grafo cuco é um grafo direcionado e eventualmente possui
ciclos. Uma caracteristica do grafo cuco é que uma posigoes p é eventual-
mente analisada na insercao de uma chave ¢ somente se existe um caminho
de hy(c) ou hz(c) para p. Para a analise é suficiente considerar o grafo cuco
nao-direcionado.

Exemplo 2.1
Para chaves de dois digitos cicy seja hy(c) = 3¢y + ¢c2 mod m e hy(c) =
4c¢1 + ¢2. Para m = 10 obtemos para uma sequencia aleatéria de chaves
c 31 41 59 26 53 58 97
hq(c) o 3 4 2 8 3 4
hz(c) 3 7 9 4 3 8 3
e a seguinte sequencia de tabelas hash

0|12 |3 |4 |5|6|7]|8]|9
Inicial

31 Insergao 31
31 41 Insercao 41
31 41 | 59 Insercao 59
31 26 | 41 | 59 Insercao 26
31 26 | 41 | 59 53 Insercao 53
31 26 | 58 | 59 41 | 53 Insercao 58
31 26 | 58 | 97 41 | 53 | 59 | Insercao 59

Lema 2.2
Para posicoes i e j e um ¢ > 1 tal que m > 2c¢n, a probabilidade de existir um
caminho minimo de i para j de comprimento d > 1 é, no méximo, ¢c~¢/m.

86

—_

O © 00 JO ULk WwN -

2.4. Filtros de Bloom

Prova. Observe que a probabilidade de um item c ter posigdes i e j como
alternativas é no maximo P[h;(c) = i,ha(c) = jl + Plhi(c) = j,ha(c) =il =
2/m?. Portanto a probabilidade de pelo menos uma das n chaves ter essa
caracterfstica é no méaximo 2n/m? =c~'/m.

A prova do lema é por indugao sobre d. Para d = 1 a afirmagao esta correto
pela observacao acima. Para d > 1 existe um caminho minimo de compri-
mento d — 1 de i para um k. A probabilidade disso é no maximo ¢~(4=1 /m
e a probabilidade de existir um elemento com posicoes alternativas k e j no
méximo c¢~'/m. Portanto, para um k fixo, a probabilidade existir um cami-
nho de comprimento d é no miximo ¢~4/m? e considerando todas posicoes k
possiveis no maximo ¢~ 4 /m. [|
Com isso a probabilidade de existir um caminho entre duas chaves i e j, é
igual a probabilidade de existir um caminho comecando em hq(i) ou hy(i) e
terminando em hy(j) ou hz(j), que é no maximo 4 ;o ;c /m < 4/m(c —
1) = O(1/m). Logo o ntmero esperado de itens visitados numa insercio é
In/m(c—1) = O(1), caso nao é necessario reconstruir a tabela hash.

2.4. Filtros de Bloom

Um filtro de Bloom armazena um conjunto de n chaves, com as seguintes
restrigoes:

e Nao é mais possivel remover elementos.

o E possivel que o teste de pertinéncia tem sucesso, sem o elemento fazer
parte do conjunto (“false positive”).

Um filtro de Bloom consiste em m bits By, 1 <1 < m, e usa k fungoes hash
hiy.oooy g

insert (c,B) :=
for i in 1...k
bii(e) =1
end for

lookup (¢,B) :=
for i in 1...k
if by,) =0
return false
return true

87

2. Tabelas hash

Tabela 2.1.: Complexidade das operagoes em tabelas hash. Complexidades
em negrito sao amortizados.

insert lookup delete
Listas encadeadas (1) O(1 + «) o1+ «)
Enderegamento aberto O(1/(1 — «)) o(1/(1 —«)) -
(com/sem sucesso) O(1/aln1/(1—«)) O(1/xIn1/(1—«)) -
Cuco 0O(1) O(1) o(1)

Ap6s de inserir n chaves, um dado bit é ainda 0 com probabilidade

k k
p/: 1_l n: 1_kn/m n%e—kn/m
m kn

que é igual ao valor esperado da fracdo de bits ndo setados'. Sendo p a fracdo
de bits nao setados realmente, a probabilidade de erradamente classificar um
elemento como membro do conjunto é

e U N (i

porque p é com alta probabilidade perto do seu valor esperado [7]. Broder e
Mitzenmacher [7] também mostram que o nimero étimo k de fungdes hash
para dados valores de n, m é m/nIn 2 e com isso temos um erro de classificagao
~ (1/2)%.

Aplicagoes:

1. Hifenagao: Manter uma tabela de palavras com hifenagao excepcional
(que nao pode ser determinado pelas regras).

2. Comunicagao efetiva de conjuntos, p.ex. selecao em bancos de dados dis-
tribuidas. Para calcular um join de dois bancos de dados A, B, primeiro
A filtra os elementos, mando um filtro de Bloom S para B e depois B
executa o join baseado em Sa. Para eliminagao de eventuais elementos
classificados erradamente, B manda os resultados para A e A filtra os
elementos errados.

1Lembrando que e* > (1 +x/n)™ para n > 0.

88

3. Algoritmos de aproximacao

Para varios problemas nao conhecemos um algoritmo eficiente. Para proble-
mas NP-completos, em particular, uma solugao eficiente é pouco provavel. Um
algoritmo de aproximacdo calcula uma solugao aproximada para um problema
de otimizacao. Diferente de uma heuristica, o algoritmo garante a qualidade da
aproximagao no pior caso. Dado um problema e um algoritmo de aproximagao
A, escrevemos A(x) = y para a solucdo aproximada da instancia x, @(x,y)
para o valor dessa solugdo, y* para a solugdo 6tima e OPT(x) = @(x,y*) para
o valor da solugao étima.

3.1. Problemas, classes e reducoes

Definigao 3.1
Um problema de otimizagao TT = (P, @, opt) é uma relagio bindria P C 1 x S
com instancias x € I e solugdes y € S, junto com

e uma fungao de otimizagao (funcdo de objetivo) @ : P — N (ou Q).
e um objetivo: Encontrar minimo ou maximo
OPT(x) = opt{e(x,y) | (x,y) € P}
junto com uma solugao y* tal que f(x,y*) = OPT(x).
O par (x,y) € P caso y é uma solugdo para x.

Uma instancia x de um problema de otimizagdo possui solugdes S(x) = {y |
(x,y) € PL

Convengao 3.1
Escrevemos um problema de otimizacgao na forma

NoME
Instancia x
Solugdo y

Objetivo Minimiza ou maximiza @(x,y).

89

3. Algoritmos de aproximag¢ao

Com um dado problema de otimizagao correspondem trés problemas:
e Construgao: Dado x, encontra a solugdo étima y* e seu valor OPT(x).
e Avaliagao: Dado x, encontra valor 6timo OPT(x).
e Decisao: Dado x e k, decide se OPT(x) > k (maximizacao) ou OPT(x) <

k (minimizagao).

Definicao 3.2
Uma relagao bindria R é polinomialmente limitada se

Jp € poly : V(x,y) € R: [yl < p(x]).

Definicao 3.3 (Classes de complexidade)

A classe PO consiste dos problemas de otimizagao tal que existe um algoritmo
polinomial A com @(x,A(x)) = OPT(x) para x € 1.

A classe NPO consiste dos problemas de otimizagao tal que

(i) As instancias x € I s@o reconheciveis em tempo polinomial.
(ii) A relagdo P é polinomialmente limitada.

(iii) Para y arbitrdrio, polinomialmente limitado: (x,y) € P é decidivel em
tempo polinomial.

(iv) @ é computavel em tempo polinomial.
Definicao 3.4
Uma redu¢ao preservando a aproximagao entre dois problemas de minimizagao

Ty e TT, consiste num par de fungdes f e g (computédveis em tempo polinomial)
tal que para instancia xq de TTq, x3 := f(x7) é instancia de TT; com

OPTh, (x2) < OPTry, (x1) (3.1)
e para uma solugéo yz de TT, temos uma solugéo y; := g(x1,yz) de TT; com

o, (x1,Y1) < @, (x2,Y2) (32)

Uma redugao preservando a aproximacao fornece uma x-aproximacao para Iy
dada uma o«-aproximacao para IT,, porque

o, (x1,y1) < o, (x2,Y2) < xOPT, (x2) < aOPTry, (x1).

Observe que essa definigao é vale somente para problemas de minimizagao. A
definigao no caso de maximizagao é semelhante.

90

3.2. Medidas de qualidade

3.2. Medidas de qualidade

Uma aproximagao absoluta garante que D(x,y) = |[OPT(x) — @(x,y)| < D
para uma constante D e todo x, enquanto uma aprorimacao relativa garante
que o erro relativo E(x,y) = D(x,y)/ max{OPT(x), ¢(x,y)} < € < 1 todos
x. Um algoritmo que consegue um aproximagao com constante € também
se chama e-aproximativo. Tais algoritmos fornecem uma solugao que difere
no méaximo um fator constante da solugao 6tima. A classe de problemas de
otimizacao que permitem uma e-aproximacao em tempo polinomial para uma
constante € se chama APX.

Uma defini¢do alternativa é a taza de aprorimacdo R(x,y) =1/(1—E(x,y)) >
1. Um algoritmo com taxa de aproximagao r se chama r-aproximativo. (Nao
tem perigo de confusdo com o erro relativo, porque v > 1.)

Aproximacao relativa

+ OPT - oxy)
D(x,y) D(x,y)
+ oxy) - OPT
X P D(X\)
E(x,y) = Z5pd E(6Y) = Sy

Exemplo 3.1

Coloragao de grafos planares e a problema de determinar a arvore geradora
e a drvore Steiner de grau minimo [20] permitem uma aproximagao absoluta,
mas nao o problema da mochila.

Os problemas da mochila e do caixeiro viajante métrico permitem uma apro-
ximacao absoluta constante, mas nao o problema do caixeiro viajante. O

3.3. Técnicas de aproximacao

3.3.1. Algoritmos gulosos

Cobertura por vértices

91

3. Algoritmos de aproximag¢ao

Algoritmo 3.1 (Cobertura por vértices)
Entrada Grafo nao-direcionado G = (V, E).

Saida Cobertura por vértices C C V.

1 VC-GV(G) :=

2 (C,G) := Reduz(G)

3 if V=0 then

4 return C

5 else

6 escolhe v e V:deg(v) =A(G) { grau maximo }
7 return CU{v}UVC-GV(G —v)

8 end if

Proposicao 3.1

O algoritmo VC-GV é uma O(log|V|)-aproximacao.

Prova. Seja Gi o grafo depois da iteracao i e C* uma cobertura 6tima, i.e.,
|C*| = OPT(G).

A cobertura 6tima C* é uma cobertura para G; também. Logo, a soma dos
graus dos vértices em C* (contando somente arestas em Gi!) ultrapassa o
numero de arestas em Gy

D 86, (v) > |Gy

veC*

e o grau médio dos vértices em G; satisfaz

= 2 vec-86. V) _]Gy G
dg. i) = v - > = .
6 (G |C*| — |Cx| OPT(G)

Como o grau maximo é maior que o grau médio temos também

_ 1G]l
A(Gy) > OPT(G)

Com isso podemos estimar

|G+l Gopr|l
2 MGl 2 GErE) 2, OPT(G)

0<i<OPT 0<i<OPT 0<i<OPT
= |Gorrll =[G — Y A(GY)
0<i<OPT

92

3.3. Técnicas de aproximacgao

ou

> A(Gi) > G]l/2,

0<i<OPT

i.e. a metade das arestas foi removido em OPT iteracoes. Essa estimativa
continua a ser valido, logo apés

OPT[Ig||G||]] < OPT [2log|G|] = O(OPT log|G|)

iteragcbes nao tem mais arestas. Como em cada iteragao foi escolhido um
vértice, a taxa de aproximacao é log|G]. |

Algoritmo 3.2 (Cobertura por vértices)
Entrada Grafo nao-direcionado G = (V, E).

Saida Um cobertura por vértices C C V.

1 VC-GE(G) :=

2 (C,G) := Reduz(G)

3 if E=(then

4 return C

5 else

6 escolhe e={u,vleE

7 return CU{u,v}UVC-GE(G —{u,v})
8 end if

Proposigcao 3.2
Algoritmo VC-GE é uma 2-aproximagao para VC.

Prova. Cada cobertura contém pelo menos um dos dois vértices escolhidos,
logo
ICl > dvecr(G)/2 = 20PT(G) > dve.ge(G).

Algoritmo 3.3 (Cobertura por vértices)
Entrada Grafo nao-direcionado G = (V, E).

Saida Cobertura por vértices C C V.

1 VC-B(G) :=

2 (C,G) := Reduz(G)
3 if V=0 then

4 return C

93

© 00 J O Ui W N+

3.

Algoritmos de aproximacao

5 else

6 escolhe v e V:deg(v) =A(G) { grau maximo }
7 Ci:=CU{MUVC-B(G —v)

8 C2:=CUN(V)UVC-B(G—v—N(v))

9 if |C1‘<|C2‘ then

10 return C;

11 else

12 return C,

13 end if

14 end if

Problema da mochila

KNAPSACK

Instancia Um nimero n de itens com valores vi € N e tamanhos t; € N,
para i € [n], um limite M, tal que t; < M (todo item cabe na
mochila).

Solugdo Uma selecao S C [n] tal que) ;¢ ti <M.

Objetivo Maximizar o valor total } ; ¢ vi.

Observacao: O problema da mochila é NP-completo.

Como aproximar?

e Idéia: Ordene por v;/t; (“valor médio”) em ordem decrescente e enche
o mochila o mais possivel nessa ordem.

Abordagem
K—G(\)i ,ti) =

94

ordene os itens tal que vi/t; >v;/t;, Vi<j.
for ie X do
if ti <M then
S:=SuUf{i}
M=M-—-t;
end if
end for
return S

3.3. Técnicas de aproximacgao

Aproximacao boa?
e Considere
v = 1,...,Vn_1 = 1,\)“ =M-1

ti=1..,th1=Lt, =M=kn k € N arbitrario

e Entao:

V1/t1 :])'-')an1/tnf1 :])Vn/tn: (M_”/M<1

e K-G acha uma solugdo com valor @(x) = n—1, mas o 6timo é OPT(x) =
M—1.

Taxa de aproximacao:

M—-1 kn—1 kn —k
= >

OPT(x)/e@(x) = n—-1 n—-1°~- n-1

=k

e K-G néo possui taxa de aproximacao fixa!

e Problema: Nao escolhemos o item com o maior valor.

Tentativa 2: Modificacao

1 K—G’(Vi,ti) =

2 S1 = K—G(Vi,ti)
3 VI = D ies, Vi

4 Sy := {argmax; vi}
5 V2 = Zieszvi

6 if vi >v, then
7 return S,

8 else

9 return S,

0 end if

Aproximacao boa?
e O algoritmo melhorou?

e Surpresa

Proposicao 3.3
K-G’ é uma 2-aproximagao, i.e. OPT(x) < 2¢k.a’(x).

95

3. Algoritmos de aproximag¢ao

Prova. Seja j o primeiro item que K-G nao coloca na mochila. Nesse ponto
temos valor e tamanho

Vj = Z vi < 9kal(x) (3.3)
1<i<j

=) t<M (3.4)
1<i<j

Afirmacao: OPT(x) < vj +vj. Nesse caso
(a) Seja v; <vj.

OPT(x) <vj +v; <2v; < 20k.a(x) < 2¢k.qr
(b) Seja vj > vj

OPT(X) < V_) +V] < ZVJ S Z\Jmax S 2(pK_G/
Prova da afirmacdo: No momento em que item j nao cabe, temos espaco
M —t; < tj sobrando. Como os itens sao ordenados em ordem de densidade

decrescente, obtemos um limite superior para a solugao étima preenchendo
esse espago com a densidade vj/t;:

OPT(x) < v —i—(M—t})lﬁ <V v
j

3.3.2. Aproximacdes com randomizacao

Randomizacao

e Idéia: Permite escolhas randémicas (“joga uma moeda”)

Objetivo: Algoritmos que decidem correta com probabilidade alta.

Objetivo: Aproximacgoes com valor esperado garantido.
e Minimizacao: E[@a (x)] < 20PT(x)
e Maximizacao: 2E[@a (x)] > OPT(x)

Randomizacao: Exemplo

96

T W N

1
2
3
4

3.3. Técnicas de aproximacgao

SATISFATIBILIDADE MAXIMA, MAXIMUM SAT

Instancia Uma férmula ¢ € L£(V) sobre varidveis V ={vi,...,vin}, @ =
C] /\Cz/\~~-/\Cn em FNC.

Solucao Uma atribuicdo de valores de verdade a:V — B.

Objetivo Maximiza o nimero de cldusulas satisfeitas

HCi [[Cil, =TH.

Nossa solucao

SAT-R(¢) :=
seja @ =@(Vi,...,)
for all ie([1,k] do
escolhe vi =1 com probabilidade 1/2
end for

Observagao 3.1
A quantidade [C], é o valor da cldusula C na atribuicao a. O

Aproximacao?

e Surpresa: Algoritmo é 2-aproximagao.

Prova. O valor esperado de uma cldusula C com 1 varidveis é E[[C]]
PIIC] =11 =1—27' > 1/2. Logo o valor esperado do nimero total T
Zie[n] [C;i] de cldusulas satisfeitas é

E[T] = E[Z [Cil] = Z E[[Cil] > n/2> OPT/2
ie[n]

ien]

pela linearidade do valor esperado. |

Outro exemplo
Cobertura por vértices guloso e randomizado.

VC-RG(G) :=
seja w:i=) . deg(v)
C:=0
while E#0 do

97

O© 00 N & Ot

SO W N =

3. Algoritmos de aproximag¢ao

escolhe veV com probabilidade deg(v)/w
C:=Cu{v}
G=G—v
end while
return CUV
Resultado: E[ldvcera(x)] < 20PT(x).
3.4. Esquemas de aproximacao

Novas consideracoes

e Freqgiientemente uma r-aproximagao nao é suficiente. r = 2: 100% de
erro!

e Fxistem aproximagoes melhores? p.ex. para SAT? problema do mochila?

e Desejavel: Esquema de aproximacdo em tempo polinomial (EATP);
polynomial time approximation scheme (PTAS)

— Para cada entrada e taxa de aproximagao T1:
— Retorne r-aproximacao em tempo polinomial.
Um exemplo: Mochila maxima (Knapsack)
e Problema da mochila (veja pagina 94):
e Algoritmo MM-PD com programacao dinamica (pag. 141): tempo O(n), vi).
e Desvantagem: Pseudo-polinomial.

Denotamos uma instancia do problema da mochila com I = ({vi}, {ti}).

MVEPTAS(I,7) :=
Vmax = maxi{vi}
t:= Llog%“ﬂi
v{ = [vi/2"] para i=1,...,n
Define a nova instancia I’ = ({v{}{ti})

return MM PD(I’)

Teorema 3.1
MM-PTAS é uma r-aproximacdo em tempo O(rn3/(r —1)).

98

3.4. Esquemas de aproximacgao

Prova. A complexidade da preparacao nas linhas 1-3 é O(n). A chamada
para MM-PD custa

AT Vi
O(n;\)i> - O<n; ((T‘* 1)/T)(Vmax/n))
=0 <T11TL2 ;Vi/\)maX> =0 <‘ri]n3> .

Seja S = MM-PTAS(I) a solugdo obtida pelo algoritmo e S* uma solucao
otima.
@wvm-rTas(], S) Zv1 > ZZt [vi/24] definigao de ||
iesS ieS
> Z 28 |vi/24 otimalidade de MM-PD sobre v/
ieS*

> w2t (A.2)

= (> vi) —2tS¥|

ies
> OPT(I) —2'n

Portanto
OPT(x)

v max

OPT(I) < oamm-pras(L, S) +2'n < oaipras(L, S) + 2'n

2tn

< OPT(]) (1 —) < @mm-pras(], S)

e com 2'N/vya < (r—1)/7

& OPT(I) < romm-pras(L,S).

|
Um EATP frequentemente nao é suficiente para resolver um problema ade-
quadamente. Por exemplo temos um EATP para

e o problema do caixeiro viajante euclidiano com complexidade O(n3000/¢€)

(Arora, 1996);

e 0 problema do mochila multiplo com complexidade O(n'2(eg1/ c)/e’)
(Chekuri, Kanna, 2000);

99

3. Algoritmos de aproximag¢ao

e 0 problema do conjunto independente maximo em grafos com complexi-
dade O(n@/m(1/e*+1)2(1/e*+2)*) (Erlebach, 2001).

Para obter uma aproximagao com 20% de erro, i.e. € = 0.2 obtemos algoritmos
com complexidade O(n'9000) O(n375000) ¢ O(n>23804) respectivamente!

3.5. Aproximando o problema da arvore de Steiner minima

Seja G = (V, A) um grafo completo, ndo-direcionado com custos ¢, > 0 nos
arcos. O problema da arvore Steiner minima (ASM) consiste em achar o
subgrafo conexo minimo que inclui um dado conjunto de wvértices necessdrios
ou terminais R C V. Esse subgrafo sempre é uma arvore (ex. 3.1). O conjunto
V\ R forma os vértices Steiner. Para um conjunto de arcos A, define o custo

c(A) =3 4caCa

Observagao 3.2

ASM é NP-completo. Para um conjunto fixo de vértices Steiner V/ C V\R, a
melhor solucao é a drvore geradora minima sobre RUV’. Portanto a dificuldade
é a selecao dos vértices Steiner da solugao étima. O

Definicao 3.5
Os custos sao métricos se eles satisfazem a desigualdade triangular, i.e.

Cij < Cix +Cij
para qualquer tripla de vértices i, j, k.

Teorema 3.2
Existe uma redugao preservando a aproximagao de ASM para a versao métrica
do problema.

Prova. O “fecho métrico” de G = (V,A) é um grafo G’ completo sobre
vértices e com custos c{j = dyj, sendo dij o comprimento do menor caminho
entre i e j em G. Evidentemente ci; < cij e portanto (3.1) é satisfeita. Para
ver que (3.2) é satisfeita, seja T’ uma solucao de ASM em G’. Define T como
unido de todos caminhos definidos pelos arcos em T’, menos um conjunto de
arcos para remover eventuais ciclos. O custo de T é no méximo c(T’) porque
o custo de todo caminho é no méximo o custo da aresta correspondente em
T |
Consequéncia: Para o problema do ASM é suficiente considerar o caso métrico.

Teorema 3.3
O AGM sobre R é uma 2-aproximagao para o problema do ASM.

100

3.6. Aproximando o PCV

1 1
: ® o e
Figura 3.2.: AGM sobre R e melhor solucao. @: vértice em R, ©: vértice
Steiner.

Prova. Considere a solucao 6tima S* de ASM. Duplica todas arestas' tal
que todo vértice possui grau par. Acha um caminho Euleriano nesse grafo.
Remove vértices duplicados nesse caminho. O custo do caminho C obtido
dessa forma nao é mais que o dobro do custo original: o grafo com todas
arestas custa 2¢(S*) e a remocao de vértices duplicados nao aumenta esse
custo, pela metricidade. Como esse caminho é uma &arvore geradora, temos
c(A) < ¢(C) < 2¢(S*) para AGM A. |

3.6. Aproximando o PCV
Teorema 3.4

Para fungao polinomial a(n) o PCV nao possui «(n)-aproximagao em tempo
polinomial, caso P # NP.

Prova. Via redugdo de HC para PCV. Para uma instancia G = (V,; A) de HC
define um grafo completo G’ com

1 aceA
Ca = ‘.
a(n)n caso contrério

sso transforma G num multigrafo.

101

3. Algoritmos de aproximag¢ao

Se G possui um ciclo Hamiltoniano, entao o custo da menor rota é n. Caso
contrario qualquer rota usa ao menos uma aresta de custo «(n)n e portanto
o custo total é > o(n)n. Portanto, dado uma «(n)-aproximacgdo de PCV
podemos decidir HC em tempo polinomial. |

Caso métrico No caso métrico podemos obter uma aproximacao melhor.
Determina uma rota como segue:

1. Determina uma AGM A de G.
2. Duplica todas arestas de A.
3. Acha um caminho Euleriano nesse grafo.

4. Remove vértices duplicados.

Teorema 3.5
O algoritmo acima define uma 2-aproximagao.

Prova. A melhor solucao do PCV menos uma aresta é uma &arvore geradora
de G. Portanto c(A) < OPT. A solugao S obtida pelo algoritmo acima satisfaz
c(S) < 2¢(A) e portanto c(S) < 20PT, pelo mesmo argumento da prova do
teorema 3.3. |
O fator 2 dessa aproximacgao é resultado do passo 2 que duplica todas arestas
para garantir a existéncia de um caminho Euleriano. Isso pode ser garantido
mais barato: A AGM A possui um numero par de vértices com grau impar
(ver exercicio 3.2), e portanto podemos calcular um emparelhamento perfeito
minimo E entre esse vértices. O grafo com arestas A U E possui somente
vértices com grau par e portanto podemos aplicar os restantes passos nesse
grafo.

Teorema 3.6
A algoritmo usando um emparelhamento perfeito minimo no passo 2 é uma
3/2-aproximagao.

Prova. O valor do emparelhamento E nao é mais que OPT/2: remove vértices
nao emparelhados em E da solucao 6tima do PCV. O ciclo obtido dessa forma
é a uniao dois emparelhamentos perfeitos E; e E; formados pelas arestas pares
ou impares no ciclo. Com E; o emparelhamento de menor custo, temos

c(B) <c(Ey) < (c(B1) +¢(E2))/2=OPT/2
e portanto

¢(S) = ¢c(A) + c(E) < OPT + OPT/2 = 3/20PT.

102

3.7. Aproximando problemas de cortes

e o

Figura 3.3.: Identificagdo de dois terminais e um corte no grafo reduzido.
Vértices em verde, terminais em azul. A grafo reduzido possui
multiplas arestas entre vértices.

3.7. Aproximando problemas de cortes

Seja G = (V, A, c) um grafo conectado com pesos ¢ nas arestas. Lembramos
que um corte C é um conjunto de arestas que separa o grafo em dois partes
SUV\S. Dado dois vértices s,t € V, o problema de achar um corte minimo
que separa s e t pode ser resolvido via fluxo méaximo em tempo polinomial.
Generalizagoes desse problema sao:

e Corte multiplo minimo (CMM): Dado terminais st,..., sk determine o
menor corte C que separa todos.

e k-corte minimo (k-CM): Mesmo problema, sem terminais definidos. (Ob-
serve que todos k componentes devem ser nao vazios).

Fato 3.1

CMM ¢é NP-dificil para qualquer k > 3. k-CM possui uma solugao polinomial
em tempo O(nkz) para qualquer k, mas é NP-dificil, caso k faz parte da
entrada.

Solucao de CMM Chamamos um corte que separa um vértice dos outros
um corte isolante. Idéia: A unido de cortes isolantes para todo s; é um
corte multiplo. Para calcular o corte isolante para um dado terminal si,
identificamos os restantes terminais em um unico vértice S e calculamos um
corte minimo entre s; e S. (Na identificagdo de vértices temos que remover
self-loops, e somar os pesos de miltiplas arestas.)

Isso leva ao algoritmo

103

3. Algoritmos de aproximag¢ao

Algoritmo 3.4 (CI)
Entrada Grafo G = (V, A, c) e terminais sq,..., Sk.
Saida Um corte miltiplo que separa os s;.

1 Para cada i€ [l,k]: Calcula o corte isolante C; de s;.
2 Remove o maior desses cortes e retorne a uniao dos
restantes.

Teorema 3.7
Algoritmo 3.4 é uma 2 — 2/k-aproximacao.

Prova. Considere o corte minimo C*. De acordo com a Fig. 3.4 ele pode ser
representado pela uniao de k cortes que separam os k componentes individu-

almente:
= U<
ie(k]

Cada aresta de C* faz parte das cortes das duas componentes adjacentes, e
portanto

ielk]

e ainda w(Ci) < w(Cjf) para os cortes C; do algoritmo 3.4, porque usamos o
corte isolante minimo de cada componente. Logo, para o corte C retornado
pelo algoritmo temos

w(C) < (1=1/k) Y w(Cy) < (1—1/k) Y w(CP) < 2(1—1/k)w(C).
ie[k] ielk]
|
A anélise do algoritmo é 6timo, como o exemplo da Fig. 3.5 mostra. O menor
corte que separa s; tem peso 2 — €, portanto o algoritmo retorne um corte de
peso (2—e€e)k—(2—¢€) = (k—1)(2— €), enquanto o menor corte que separa
todos terminais é o ciclo interno de peso k.

Solugao de k-CM Problema: Como saber a onde cortar?

Fato 3.2

Existem somente n—1 cortes diferentes num grafo. Eles podem ser organizados
numa arvore de Gomory-Hu (AGH) T = (V,T). Cada aresta dessa arvore
define um corte associado em G pelos dois componentes apds a sua remocao.

104

3.7. Aproximando problemas de cortes

Figura 3.4.: Corte multiplo e decomposicao em cortes isolantes.

Figura 3.5.: Exemplo de um grafo em que o algoritmo 3.4 retorne uma 2—2/k-
aproximagao.

105

3. Algoritmos de aproximag¢ao

1. Para cada u,v € V o menor corte u-v em G ¢é igual a o menor corte u—v
em T (i.e. a aresta de menor peso no caminho unico entre w e v em T).

2. Para cada aresta a € T, w/(a) é igual a valor do corte associado.

Por conseqiiéncia, a AGH codifica o valor de todos cortes em G.
Ele pode ser calculado determinando n — 1 cortes s—t minimos:

1. Define um grafo com um tnico vértice que representa todos vértices do
grafo original. Chama um vértice que representa mais que um vértice
do grafo original gordo.

2. Enquanto existem vértices gordos:

a) Escolhe um vértice gordo e dois vértices do grafo original que ele
representa.

b) Calcula um corte minimo entre esses vértices.

¢) Separa o vértice gordo de acordo com o corte minimo encontrado.

Observagao: A uniao dos cortes definidos por k — 1 arestas na AGH separa G
em pelo menos k componentes. Isso leva ao seguinte algoritmo.

Algoritmo 3.5 (KCM)
Entrada Grafo G = (V,A,c).

Saida Um k-corte.

1 Calcula uma AGH T em G.
2 Forma a unidao dos k—1 cortes mais leves
definidos por k—1 arestas em T.

Teorema 3.8
Algoritmo 3.5 é uma 2 — 2/k-aproximacao.

Prova. Seja C* = Uie[k] Cf um corte minimo, decomposto igual a prova
anterior. O nosso objetivo é demonstrar que existem k — 1 cortes definidos
por uma aresta em T que sao mais leves que os C}.

Removendo C* de G gera componentes V7,..., Vi: Define um grafo sobre esses
componentes identificando vértices de uma componente com arcos da AGH T
entre os componentes, e eventualmente removendo arcos até obter uma nova
arvore T'. Seja C} o corte de maior peso, e define Vi como raiz da drvore.

106

3.8. Aproximando empacotamento unidimensional

Desta forma, cada componente Vi,..., Vi_1 possui uma aresta associada na
direcdo da raiz. Para cada dessas arestas (u,v) temos

w(C}) = w'(u,v)

porque C7 isola o componente Vi do resto do grafo (particularmente separa u
ev), e w (u,v) é o peso do menor corte que separa u e v. Logo

w(C < Y wila)< Y w(C)<(1-1/k) 3 w(CF) =2(1-1/kw(C").
ielk]

aeT’ 1<i<k

3.8. Aproximando empacotamento unidimensional

Dado n itens com tamanhos s; € Z,, 1 € [n] e contéineres de capacidade
S € Z, o problema do empacotamento unidimensional é encontrar o menor
ndmero de contéineres em que os itens podem ser empacotados.

EMPACOTAMENTO UNIDIMENSIONAL (MIN-EU) (BIN PACKING)

Entrada Um conjunto de n itens com tamanhos s; € Z,, 1 € [n] e o
tamanho de um contéiner S.

Solugcao Uma particdo de [n] = C;U---UC,, tal que ZieCk s; < S para
k € [m].

Objetivo Minimiza o nimero de partes (“contéineres”) m.

A versao de decisao do empacotamento unidimensional (EU) pede decidir se
o itens cabem em m contéineres.

Fato 3.3
EU é fortemente NP-completo.

Proposigao 3.4 s
Para um tamanho S fixo EU pode ser resolvido em tempo O(ns").

Prova. Podemos supor, sem perda de generalidade, que os itens possuem
tamanhos 1,2,...,S — 1. Um padrao de alocagdo de um contéiner pode ser
descrito por uma tupla (ty,...,ts_1) sendo t; o nimero de itens de tamanho
i. Seja T o conjunto de todas padrdes que cabem num contéiner. Como
0 < t; < S o numero total de padrées T é menor que (S+1)5~" = O(S3S).

107

3. Algoritmos de aproximag¢ao

Uma ocupagao de m contéineres pode ser descrito por uma tupla (ni,...,nr)
com my sendo o numero de contéineres que usam padrao i. O numero de
contéineres é no maximo n, logo 0 < n; < n e o nimero de alocagoes diferentes
é no maximo (n+1)T = O(n'). Logo podemos enumerar todas possibilidades
em tempo polinomial. |

Proposicao 3.5
Para um m fixo, EU pode ser resolvido em tempo pseudo-polinomial.

Prova. Seja B(Sq,...,Sm,1) € {falso, verdadeiro} a resposta se itens i,1 +
1,...,m cabem em m contéineres com capacidades Sy,...,Sy,. B satisfaz

1<i<m B(S1y..4, S5 —85,...,Smyi+1) i<n
B(S],...,Sm,i)—{\/si]gsj ’ y9j iy y Omy

verdadeiro i>n

e B(S,...,S,1) é a solucdo do EU?. A tabela B possui no maximo n(S +1)™
entradas, cada uma computédvel em tempo O(m), logo o tempo total é no
méximo O(mn(S+1)™). []

Observagao 3.3

Em tempo adicional O(S) podemos resolver também MIN-EU, procurando o

menor i tal que B(S,...,S,0,...,0,1n) é verdadeiro. O
oL o

i vezes
A proposicao 3.4 pode ser melhorada usando programacao dinamica.

Proposicao 3.6
Para um ntmero fixo k de tamanhos diferentes, min-EU pode ser resolvido
em tempo O(n?*).

Prova. Seja B(ij,...,ix) o menor nimero de contéineres necessario para
empacotar ij itens do j-ésimo tamanho e T o conjunto de todas padroes de
alocacao de um contéiner. B satisfaz

. . 1+minteT_B(i17t1,...,ik*tk) caso (i1,...,1) €T
B(lh'--»lk) = st

1 caso contrario

e B(nq,...,ny) é a solucdo do EU, com n; o nimero de itens de tamanho 1 na
entrada. A tabela B tem no maximo n* entradas. Como o nimero de itens
em cada padrdo de alocacdo é no maximo n, temos |T| < n¥ e logo o tempo
total para preencher B é no méaximo O(n?*). |

Corolario 3.1
Para um tamanho S fixo min-EU pode ser resolvido em tempo O(n?%).

20bserve que a disjuncéo vazia é falso.

108

3.8. Aproximando empacotamento unidimensional

Abordagem pratica?
o Idéia simples: Préximo que cabe (PrC).

e Por exemplo: Itens 6,7,6,2,5,10 com limite 12.

Aproximacao?
e Interessante: PrC é 2-aproximagao.
e Observagao: PrC é um algoritmo on-line.

Prova. Seja B o niimero de contéineres usadas, V = 3 ;si. B < 2[V]
porque dois contéineres consecutivas contém uma soma > 1. Mas precisa-
mos pelo menos [V] contéineres, logo OPT(x) > [V]. Portanto, @p.c(x) <
2[V] <20PT(x). |

Aproximacao melhor?
e Isso é a melhor estimativa possivel para este algoritmo!

e Considere os 4n itens

1/2,1/2n,1/2,1/2n,...,1/2,1/2n

2n vezes

e O que faz PrC? @p,c(x) = 2n: contéineres com

109

3. Algoritmos de aproximag¢ao

-

e Otimo: n contéineres com dois elementos de 1 /2 + um com 2n elementos
de 1/2n. OPT(x) =n=1.

llll l /zn
/Zn

/Zn

ge /Zn

e Portanto: Assintoticamente a taxa de aproximacao 2 é estrito.

Melhores estratégias
e Primeiro que cabe (PiC), on-line, com “estoque” na memdria
e Primeiro que cabe em ordem decrescente: PiCD, off-line.
e Taxa de aproximagao?

@ric(x) < [1.70PT(x)]
@picp(x) < 1.50PT(x) + 1

Prova. (Da segunda taxa de aproximagao.) Considere a particdto AUBUCU
D ={vi,...,vn} com
A ={vi|vi >2/3}
B :{V1|2/3 > v > 1/2}
=i |1/2>vi >1/3}
D={vi[1/3>vi}
PiCD primeiro vai abrir |A| contéineres com os itens do tipo A e depois |B|

contéineres com os itens do tipo B. Temos que analisar o que acontece com
os itens em C e D.

110

3.8. Aproximando empacotamento unidimensional

Supondo que um contéiner contém somente itens do tipo D, os outros contéineres
tem espago livre menos que 1/3, senao seria possivel distribuir os itens do tipo
D para outros contéineres. Portanto, nesse caso

\%
B < {2/3} <3/2V+1<3/20PT(x) + 1.

Caso contrario (nenhum contéiner contém somente itens tipo D), PiCD en-
contra a solucdo 6tima. Isso pode ser justificado pelos seguintes observagoes:

1) O ntmero de contéineres sem itens tipo D é o mesmo (eles sdo os ultimos
distribuidos em nao abrem um novo contéiner). Logo é suficiente mostrar

@picp(x\ D) = OPT(x\ D).

2) Os itens tipo A nao importam: Sem itens D, nenhum outro item cabe
junto com um item do tipo A. Logo:

@picp(x\ D) = |A[+ @picp(x \ (AU D)).

3) O melhor caso para os restantes itens sdo pares de elementos em B e C:
Nesse situagao, PiCD acha a solucao 6tima.

Aproximacao melhor?

e Tese doutorado D. S. Johnson, 1973, 70 pag

11
@picp(x) < 7OPT(X) +4

e Baker, 1985
11
@picp(x) < ?OPT(X) +3

3.8.1. Um esquema de aproximacao assintético para min-EU

Duas ideias permitem aproximar min-EU em (1+€)OPT(I)+1 para € € (0, 1].

111

3. Algoritmos de aproximag¢ao

Ideia 1: Arredondamento Para uma instancia I, define uma instancia R
arredondada como segue:

1. Ordene os itens de forma nao-decrescente e forma grupos de k itens.
2. Substitui o tamanho de cada item pelo tamanho do maior elemento no
seu grupo.

Lema 3.1
Para uma instancia I e a instancia R arredondada temos

OPT(R) < OPT(I) + k

Prova. Supoe que temos uma solugao étima para I. Os itens da i-ésima grupo
de R cabem nos lugares dos itens da i 4 1-ésima grupo dessa solugao. Para o
dltimo grupo de R temos que abrir no méximo k contéineres. |

Ideia 2: Descartando itens menores

Lema 3.2

Supoe temos temos um empacotamento para itens de tamanho maior que sg
em B contéineres. Entao existe um empacotamento de todos itens com no
maximo

max{B, Z si/(S—so0) + 1}

i€n]
contéineres.

Prova. Empacota os itens menores gulosamente no primeiro contéiner com
espaco suficiente. Sem abrir um novo contéiner o limite é obviamente correto.
Caso contrario, supoe que precisamos B’ contéineres. B’—1 contéineres contém
itens de tamanho total mais que S — sg. A ocupagao total W deles tem que
ser menor que o tamanho total dos itens, logo

(B =1)(S—s0) SW<) s

i€n]

Juntando as ideias

Teorema 3.9
Para € € (0,1] podemos encontrar um empacotamento usando no maximo
(14 €)OPT(I) + 1 contéineres.

112

3.9. Aproximando problemas de sequénciamento

Prova. O algoritmo tem dois passos:

1. Empacota todos itens de tamanho maior que so = [€/2S] usando arre-
dondamento.

2. Empacota os itens menores depois.

Seja I’ a instancia com os 1’ < n itens maiores. No primeiro passo, formamos
grupos com {n’ e? /4J itens. Isso resulta em no maximo
n’ < 2n’ 8
[n’e2/4] — n'e?/4 €2

grupos. (A primeira desigualdade usa |x| > x/2 para x > 1. Podemos supor
que n'e?/4 > 1, ie.n’ > 4/e?. Caso contrario podemos empacotar os itens
em tempo constante usando a proposigao 3.6.)

Arredondando essa instancia de acordo com lema 3.1 podemos obter uma
solucdo em tempo O(n' 6/€Z) pela proposicao 3.6. Sabemos que OPT(I') >
n’'[e/2S]/S > n’e/2. Logo temos uma solugdo com no méximo

OPT(I') + |ne?/4| < OPT(I') +n'e?/4 < (1+¢€/2)OPT(I') < (1 + ¢/2)OPT(I)

contéineres.
O segundo passo, pelo lema 3.2, produz um empacotamento com no maximo

max{(] + €/2)OPT(1), Z si/(S—so) + 1}
ien]

contéineres, mas

2icm] Si < D icin Si < OPT(I) <
S—so ~ S(1—¢€/2) — 1—¢/2 —

(1+ ¢)OPT(I).

3.9. Aproximando problemas de sequénciamento

Problemas de sequénciamento recebem nomes da forma

o|Bly

com campos

113

3. Algoritmos de aproximag¢ao

Méaquina o

1 Um processador

P processadores paralelos

Q processadores relacionados
R processadores arbitrarios
Restrigoes

d; Deadlines

Ti Release times

Pi=p Tempo uniforme p

prec Precedéncias

Funcgao objetivo y

Cax maximum completion (duragdo méxima)
2. G duragao média

L; lateness C; — d;

T; tardiness max(Li, 0)

Relacao com empacotamento unidimensional:

tempo ou tamanho

processadores ou contéineres
e Empacotamento unidimensional: Dado Cp,ax minimize o nimero de pro-
cessadores.

e P || Chax: Dado um nimero de contéineres, minimiza o tamanho dos
contéineres.

SEQUENCIAMENTO EM PROCESSORES PARALELOS (P || Cpax)

Entrada O numero m de processadores e 1 tarefas com tempo de execugao
pi, L € nl.

Solucdo Um sequenciamento, definido por uma alocacio M; U --- U
M. = [n] das tarefas as méquinas.

114

3.9. Aproximando problemas de sequénciamento

Objetivo Minimizar o makespan (tempo de término) Cpax = maxjeim) Cj,
com Cj = ZieM,- pi o tempo de término da maquina j.

Fato 3.4
O problema P || Cax € fortemente NP-completo.

Um limite inferior para C} . = OPT é

max

LB = max{{ré%pi, Z pi/m}.

ie[n]

Uma classe de algoritmos gulosos para este problema sao os algoritmos de
sequenciamento em lista (inglés: list scheduling). Eles processam as tarefas
em alguma ordem, e alocam a tarefa atual sempre a maquina de menor tempo
de término atual.

Proposigao 3.7

Sequenciamento em lista com ordem arbitrdria permite uma 2—1/m-aproximagao
em tempo O(nlogn).

Prova. Seja C.x o resultado do sequenciamento em lista. Considera uma
maquina com tempo de término Cp.x. Seja j a ultima tarefa alocada nessa
maquina e C o término da maquina antes de alocar tarefa j. Logo,

Coax =CH+p; <) pi/m+p; < Y py/m—p;/m+p
ielj—1] i€n]

<LB+(1—1/mLB=(2-1/mLB < (2—1/m)C%,..

A primeira desigualdade é correto, porque alocando tarefa j a méquina tem
tempo de término minimo. Usando uma fila de prioridade a maquina com o
menor tempo de término pode ser encontrada em tempo O(logn). |

Observagao 3.4
Pela prova da proposicao 3.7 temos

LB < C} .. <2LB.

max
O

O que podemos ganhar com algoritmos off-line? Uma abordagem é ordenar
as tarefas por tempo execugao nao-crescente e aplicar o algoritmo gulos. Essa
abordagem é chamada LPT (largest processing time).

115

3. Algoritmos de aproximag¢ao

Proposicao 3.8
LPT é uma 4/3 — m/3-aproximacdo em tempo O(nlogn).

Prova. Seja p1 > p2 > ---pn € supOe que isso é o menor contra-exemplo
em que o algoritmo retorne Cpax > (4/3 — m/3)Ck ... Nao é possivel que a
alocagao do item j < m resulta numa maquina com tempo de término Ciyax,
porque pi,...,Ppj seria um contra-exemplo menor (mesmo Cpax, menor C .).
Logo a alocagao de pyn define o resultado Cyax.

Caso pn < Ci../3 pela prova da proposi¢do 3.7 temos Cpax < (4/3 —
m/3)C} ., uma contradicdo. Mas caso pn > Ci .. /3 todas tarefas possuem
tempo de execucao pelo menos C} .. /3 e no maximo duas podem ser execu-
tadas em cada méquina. Logo Cp.x < 2/3C% outra contradigao. |

max’

3.9.1. Um esquema de aproximacao para P || Cax

Pela observacao 3.4 podemos reduzir o P || Cphax para o empacotamento unidi-
mensional via uma busca bindria no intervalo [LB, 2LB]. Pela proposigao 3.5
isso é possivel em tempo O(log LB mn(2LB + 1)™).

Com mais cuidado a observagdo permite um esquema de aproximagdo em
tempo polinomial assintético: similar com o esquema de aproximagao para
empacotamento unidimensional, vamos remover elementos menores e arre-
dondar a instancia.

Algoritmo 3.6 (Sequencia)
Entrada Uma instancia I de P || Cpax, um término méximo C e um
parametro de qualidade €.
1 Sequencia(I,C,e):=
2 remove as tarefas menores com p; <eC, j€ [n]
3 arredonda cada pj € [eC(1+¢€)',eC(1+¢€)'"") para algum i
para p; = eC(1+e)t
4 resolve a instadncia arredondada com programacao
dindmica (proposigao 3.6)
5 empacota os itens menores gulosamente, usando
novas méaquinas para manter o término (1+¢€)C
Lema 3.3

O algoritmo Sequencia gera um sequenciamento que termina em no maximo

(1 + €)C em tempo O(nz[log‘ﬂ Vel). Ele ndo usa mais mdquinas que o
minimo necessario para executar as tarefas com término C

Prova. Para cada intervalo vélido temos eC(1 4 €)' < C, logo o niimero de
intervalos é no maximo k = [log; . 1/€]. O valor k também ¢ um limite

116

3.10. Exercicios

para o numero de valores ‘pj’ distintos e pela proposi¢ao 3.6 o terceiro passo
resolve a instancia arredondada em tempo O(n?*). Essa solucdo com os itens
de tamanho original termina em no maximo (1 + €)C, porque pj/p]-’ <T+e.
O ntmero minimo de méquinas para executar as tarefas em tempo C é o valor
m := min-EU(C, (pj)jem;) do problema de empacotamento unidimensional
correspondente. Caso o ultimo passo do algoritmo n@o usa novas maquinas
ele precisa < m mdquinas, porque a instancia arredondada foi resolvida exa-
tamente. Caso contrario, uma tarefa com tempo de execucao menor que €C
nao cabe nenhuma maéaquina, e todas maquinas usadas tem tempo de término
mais que C. Logo o empacotamento étimo com término C tem que usar pelo
menos 0 mesmo ntmero de maquinas. |

Proposigao 3.9
O resultado da busca bindria usando o algoritmo Sequencia Cp . = min{C €
[LB, 2LB] | Sequencia(l, C, e) < m} é no maximo C} .

Prova. Com Sequencia(l, C, e) < min-EU(C, (pi)icn)) temos

Cmax = min{C € [LB, 2LB] | Sequencia(I, C, €) < m}
< min{C € [LB,2LB] | min-EU(C, (Pi)iem)) < m}
= Cfnax

Teorema 3.10
A busca bindria usando o algoritmo Sequencia para determinar determina

um sequenciamento em tempo O(n? [10g1 1 1/¢] log LB) de término méximo
(1+e)Cx

max*

Prova. Pelo lema 3.3 e a proposicao 3.9. |

3.10. Exercicios

Exercicio 3.1
Por que um subgrafo conexo de menor custo sempre é uma arvore?

Exercicio 3.2
Mostra que o nimero de vértices com grau impar num grafo sempre é par.

Exercicio 3.3

Um aluno propoe a seguinte heuristica para o empacotamento unidimensional:
Ordene os itens em ordem crescente, coloca o item com peso méximo junto com
quantas itens de peso minimo que é possivel, e depois continua com o segundo
maior item, até todos itens foram colocados em bins. Temos o algoritmo

117

© 00 O Ui W N+

3. Algoritmos de aproximag¢ao

ordene itens em ordem crescente
m:=1; M:=n
while (m<M) do
abre novo contéiner, coloca vy, M:=M-—1
while (v, cabe e m<M) do
coloca v, no contéiner atual
m:=m-+1
end while
end while
Qual a qualidade desse algoritmo? E um algoritmo de aproximacao? Caso
sim, qual a taxa de aproximagao dele? Caso nao, por qué?

Exercicio 3.4

Prof. Rapidez propoe o seguinte pré-processamento para o algoritmo SAT-R de
aproximagao para MAX-SAT (pagina 97): Caso a instancia contém cladsulas
com um unico literal, vamos escolher uma delas, definir uma atribuicao parcial
que satisfazé-la, e eliminar a varidvel correspondente. Repetindo esse procedi-
mento, obtemos uma instancia cujas clatisulas tem 2 ou mais literais. Assim,
obtemos 1 > 2 na anélise do algoritmo, o podemos garantir que E[X] > 3n/4,
i.e. obtemos uma 4/3-aproximacao.

Este andlise é correto ou nao?

118

4. Algoritmos randomizados

Um algoritmo randomizado usa eventos randémicos na sua execugao. Modelos
computacionais adequadas sao maquinas de Turing randémicas — mais usadas
na area de complexidade — ou méquinas RAM com um comando do tipo
random(8S) que retorne um elemento randémico do conjunto S.

Veja alguns exemplos de probabilidades:

Probabilidade morrer caindo da cama: 1/2 x 10° [36].
Probabilidade acertar 6 nimeros de 60 na mega-sena: 1/50063860.

Probabilidade que a meméria falha: em memoria moderna temos 1000
FIT/MBit, i.e. 6 x 10~ erros por segundo num meméria de 256 MB.!

Probabilidade que um meteorito destréi um computador em cada milis-
segundo: > 27100 (supondo que cada milénio a0 menos um meteorito
destréi uma drea de 100 m?).

Portanto, um algoritmo que retorna uma resposta falsa com baixa probabi-
lidade é aceitdavel. Em retorno um algoritmo randomizado frequentemente

7

e

4.1.

mais simples;

mais eficiente: para alguns problemas, o algoritmos randomica é o mais
eficiente conhecido;

mais robusto: algoritmos randémicos podem ser menos dependente da
distribuicao das entradas.

a Unica alternativa: para alguns problemas, conhecemos sé algoritmos
randomicos.

Teoria de complexidade

Classes de complexidade

LFIT é uma abreviacio de “failure-in-time” e é o niimero de erros cada 107 segundos. Para
saber mais sobre erros em memdria veja [39)].

119

IENEGUR R

4. Algoritmos randomizados

Definicao 4.1
Seja X algum alfabeto e R(x,) a classe de linguagens L C X* tal que existe
um algoritmo de decisao em tempo polinomial A que satisfaz

e x € L= Pr[A(x) =sim] > «.
e x ¢ L = Pr[A(x) = nao] > B.

(A probabilidade é sobre todas sequéncias de bits randomicos . Como o
algoritmo executa em tempo polinomial no tamanho da entrada [x|, o ndmero
de bits randomicas [r| é polinomial em |x| também.)

Com isso podemos definir

e a classe RP := R(1/2,1) (randomized polynomial), dos problemas que
possuem um algoritmo com erro unilateral (no lado do “sim”); a classe
co — RP = R(1,1/2) consiste dos problemas com erro no lado de “nao”;

e a classe ZPP := RP N co — RP (zero-error probabilistic polynomial) dos
problemas que possuem algoritmo randomizado sem erro;

e a classe PP := R(1/2+ €,1/2 + €) (probabilistic polynomial), dos pro-
blemas com erro 1/2 + € nos dois lados; e

e a classe BPP := R(2/3,2/3) (bounded-error probabilistic polynomial),
dos problemas com erro 1/3 nos dois lados.

Algoritmos que respondem corretamente somente com uma certa probabili-
dade também sao chamados do tipo Monte Carlo, enquanto algoritmos que
usam randomizagao somente internamente, mas respondem sempre correta-
mente sao do tipo Las Vegas.

Exemplo 4.1 (Teste de identidade de polinomios)

Dado dois polinémios p(x) e q(x) de grau maximo d, como saber se p(x) =
q(x)? Caso temos os dois na forma candnica p(x) = Y y-;4 Pix' ou na forma
fatorada p(x) = [];<;<q(x — Ti) isso é simples responder por comparacao de
coeficientes em tempo O(n). E caso contrério? Uma conversao para a forma
candnica pode custar @(d?) multiplicacoes. Uma abordagem randomizada
é vantajosa, se podemos avaliar o polinémio mais rdpido (por exemplo em

O(d)):

identico(p,q) :=
Seleciona um numero randoémico T no intervalo [1,100d].
Caso p(r) =q(r) retorne ‘‘sim’’.

Caso p(r) #d(r) retorne ‘‘néo

)

120

4.1. Teoria de complexidade

Caso p(x) = q(x), o algoritmo responde “sim” com certeza. Caso contrério
a resposta pode ser errada, se p(r) = q(r) por acaso. Qual a probabilidade
disso? p(x) — q(x) é um polinémio de grau d e possui no maximo d raizes.
Portanto, a probabilidade de encontrar um r tal que p(r) = q(r), caso p Z q
é d/100d = 1/100. Isso demonstra que o teste de identidade pertence & classe
co — RP. O

Observagao 4.1
E uma pergunta em aberto se o teste de identidade pertence a P. %

4.1.1. Amplificacdo de probabilidades

Caso nao estamos satisfeitos com a probabilidade de 1/100 no exemplo acima,
podemos repetir o algoritmo k vezes, e responder “sim” somente se todas k
repeticoes responderam “sim”. A probabilidade erradamente responder “nao”
para polinémios idénticos agora é (1/100), i.e. ela diminui exponencialmente
com o nuimero de repeticoes.

Essa técnica é uma amplificacdo da probabilidade de obter a solugao correta.
Ela pode ser aplicada para melhorar a qualidade de algoritmos em todas clas-
ses “Monte Carlo”. Com um nimero constante de repeticoes, obtemos uma
probabilidade baixa nas classes RP, co — RP e BPP. Isso nao se aplica a PP:
é possivel que € diminui exponencialmente com o tamanho da instancia. Um
exemplo de amplificacao de probabilidade encontra-se na prova do teorema 4.6.

Teorema 4.1
R(a, 1) =R(B,1) para 0 < o, B < 1.

Prova. Sem perda de generalidade seja & < . Claramente R(3,1) C R(«, 1).
Supde que A é um algoritmo que testemunha L € R(a,1). Execute A no
maximo k vezes, respondendo “sim” caso A responde “sim” em alguma iteragao
e “nao” caso contrario. Chama esse algoritmo A’. Caso x ¢ L temos P[A/(x) =
“ngo”] = 1. Caso x € L temos P[A/(x) = “sim”] > 1 — (1 — a)¥, logo para
k>InT—f/In1— &, P[A/(x) = “sim”] > B. |

Corolario 4.1
RP =R(e,1) para 0 < ax < 1.

Teorema 4.2
R(a, &) = R(B, B) para 1/2 < «, .

Prova. Sem perda de generalidade seja o« < (. Claramente R(f3,) C
R,).

121

4. Algoritmos randomizados

Supde que A é um algoritmo que testemunha L € R(«x, «). Executa A k vezes,
responde “sim” caso a maioria de respostas obtidas foi “sim”, e “nao” caso
contrario. Chama esse algoritmo A’. Para x € L temos

P[A'(x) = “sim”] = P[A(x) = “sim” > |k/2] 4+ 1 vezes] > 1 — e 2k(a—1/2)?

e para k > In(f —1)/2(x—1/2)? temos P[A’(x) = “sim”] > B. Similarmente,
para x € L temos P[A’(x) = “nao”] > B. Logo L € R(B, B). [|
Corolario 4.2

BPP = R(«, &) para 1/2 < «.

Observagao 4.2

Os resultados acima sao vélidos ainda caso o erro dimiui polinomialmente
com o tamanho da instancia, i.e. &, 3 > n~° no caso do teorema 4.1 e &, 3 >
1/24n"¢ no caso do teorema 4.2 para um constante ¢ (ver por exemplo Arora
e Barak [4]). O

4.1.2. Relacao entre as classes
Duas caracterizacoes alternativas de ZPP

Definicao 4.2
Um algoritmo A é honesto se

i) ele responde ou “sim”, ou “néo” ou “nao sei”,
ii) Pr[A(x) =nao sei] < 1/2 e

iii) no caso ele responde, ele nao erra, i.e., para x tal que A(x) # “nao sei”
temos A(x) = “sim” &= x € L.

Uma linguagem ¢é honesta caso ela possui um algoritmo honesto. Com isso
também podemos falar da classe das linguagens honestas.

Teorema 4.3
ZPP é a classe das linguagens honestas.

Lema 4.1
Caso L € ZPP existe um algoritmo um algoritmo honesto para L.

Prova. Para um L € ZPP existem dois algoritmos A; € RP e A, € co— RP.
Vamos construir um algoritmo

122

© 00 O U Wi

4.1. Teoria de complexidade

if Aij(x) = “nao” e Az(x)= “nado” then

return ‘‘nao’’
else if A;(x) = “nao” e Aj(x)= “sim” then
return ‘‘nao sei’’

else if A (x) = “sim” e Az(x) = “nao” then

{ caso impossivel }
else if A;(x)=“im” e Ajz(x) = “sim” then

return ‘‘sim’’
end if
O algoritmo responde corretamente “sim” e “nao”, porque um dos dois al-
goritmos nao erra. Qual a probabilidade do segundo caso? Para x € L,
PrlA;(x) = “nao” A Az(x) = “sim”] < 1/2 x 1 = 1/2. Similarmente, para
x € L, Pr[A;(x) = “ndo” N Az(x) = “sim”] < 1x1/2=1/2. |

Lema 4.2
Caso L possui um algoritmo honesto L € RP e L € co — RP.

Prova. Seja A um algoritmo honesto. Constréi outro algoritmo que sempre
responde “nao” caso A responde “nao sei”, e senao responde igual. No caso de
co — RP analogamente constréi um algoritmos que responde “sim” nos casos
“nao sei” de A.]

Definicao 4.3

Um algoritmo A é sem falha se ele sempre responde “sim” ou “nao” corre-
tamente em tempo polinomial esperado. Com isso podemos também falar de
linguagens sem falha e a classe das linguagens sem falha.

Teorema 4.4
ZPP é a classe das linguagens sem falha.

Lema 4.3
Caso L € ZPP existe um algoritmo sem falha para L.

Prova. Sabemos que existe um algoritmo honesto para L. Repete o algo-
ritmo honesto até encontrar um “sim” ou “nao”. Como o algoritmo honesto
executa em tempo polinomial p(n), o tempo esperado desse algoritmo ainda
é polinomial:

D_k2%p(n) < 2p(n)
k>0

Lema 4.4
Caso L possui um algoritmo A sem falha, L € RP e L € co — RP.

123

T W N =

4. Algoritmos randomizados

Prova. Caso A tem tempo esperado p(n) executa ele para um tempo 2p(n).
Caso o algoritmo responde, temos a resposta certa. Caso contrario, responde
“sim”. Pela desigualdade de Markov temos uma resposta com probabilidade
PIT > 2p(n)] < p(n)/2p(n) = 1/2. Isso mostra que existe um algoritmo
honesto para L, e pelo lema 4.2 L € RP. O argumento para L € co—RP ¢
similar. |

Mais relacoes

Teorema 4.5
RP C NP eco—RP Cco— NP

Prova. Supoe que temos um algoritmo em RP para algum problema L. Pode-
mos, nao-deterministicamente, gerar todas seqiiencias r de bits randémicos e
responder “sim” caso alguma execuc¢ao encontra “sim”. O algoritmo é correto,
porque caso para um X ¢ L, ndo existe uma sequéncia randémica r tal que o
algoritmo responde “sim”. A prova do segundo caso é similar. |

Teorema 4.6
RP C BPP ¢ co — RP C BPP.

Prova. Seja A um algoritmo para L € RP. Constréi um algoritmo A’

if A(x) = “nao” e A(x) = “ndo” then

return ‘‘nao
else

return ‘‘sim’’
end if

Caso x € L, Prl[A’(x) = “nao”] = Prl[A(x) = “nao” ANA(x) = “nao’] =1x1=
1. Casox € L,

Pr[A’(x) = “sim”] =1 —Pr[A’(x) = “nao”] =1 —Pr[A(x) = “ndo” AA(x) =
> 1—1/2x1/2=3/4>2/3.

(Observe que para k repeticoes de A obtemos Pr[A’(x) = “sim”] > 1 —1/2k,
i.e., o erro diminui exponencialmente com o nimero de repetigdes.) O argu-
mento para co — RP é similar. |

Relacao com a classe NP e abundancia de testemunhas Lembramos que a
classe NP contém problemas que permitem uma verificacao de uma solugao em
tempo polinomial. Nao-deterministicamente podemos “chutar” uma solugao
e verificd-la. Se o nimero de solugoes positivas de cada instancia é mais que
a metade do nimero total de solucoes, o problema pertence a RP: podemos

124

“naoﬂ]

4.2. Selegao

PP = co— PP

e

NP co— NP
w7

BPP = co — BPP

Figura 4.1.: Relacoes entre classes de complexidade para algoritmos
randomizados.

gerar uma soluc¢ao randomica e testar se ela possui a caracteristica desejada.
Uma problema desse tipo possui uma abundancia de testemunhas. Isso de-
monstra a importancia de algoritmos randomizados. O teste de equivaléncia
de polinémios acima é um exemplo de abundancia de testemunhas.

4.2. Selecao

O algoritmo deterministico para selecionar o k-ésimo elemento de uma se-
quencia nao ordenada x1, ..., Xy discutido na se¢do A.1 (pdgina 142) pode ser
simplificado usando randomizagao: escolheremos, um elemento pivo m = x;
aleatdrio. Com isso o algoritmo A.1 fica mais simples:

Algoritmo 4.1 (Sele¢ao randomizada)
Entrada Numeros x1,...,Xn, posicao k.

Saida O k-ésimo maior numero.
1 S(ky{x1y...,xn}) =
2 if n<1
3 calcula e retorne o k ésimo elemento

125

4. Algoritmos randomizados

end if

m:=x; para um i€ [n] aleatdria
Li={xi|xi<m1<i<n}
Ri={xi[xi >m,1 <i<n}
1= +1
if i=%k then
return m
else if i>k then
return S(k,L)
else
return S(k—1i,R)
end if

Para determinar a complexidade podemos observar que com probabilidade
1/n temos |L| =1 e |R| =n —1 e o caso pessimista é uma chamada recursiva
com max{i,n — 1} elementos. Logo, com custo cn para particionar o conjunto
e os testes temos

T(n) < Z 1/nT(max{n —1i,i}) +cn
ielo,n]

=im|l Y Tm-i9+)

i€l0,[n/2]] i€e[[n/2],n]

2/m Y Tn—i)+cn

i€l0,[n/2]]

Separando o termo T(n) do lado direito obtemos

Ti) | +cn

(1-2mTm)<2/m Y Th—i+cn

iell,[n/2]]
2

—=Tn) < —(Z T(n—1) +cn?/2).

—n-—-2"
iell,[n/2]]

Provaremos por indugao que T(n) < c¢’n para uma constante c’. Para um
n < ng o problema pode ser claramente resolvido em tempo constante (por
exemplo em O(nplogny) via ordenagao). Logo, supde que T(i) < c¢’i para

126

4.3. Corte minimo

i < n. Demonstraremos que T(n) < ¢/n. Temos

T(n) < —(> Tn—i)+cn?/2)
ie[1,[n/2]]
< ZCI(Z n—1i+cn?/2¢’)
—n-—2".
ie[1,[n/2]]
= (= n/2) - 1) [n/2) /2 4 en?/2c')

ecom 2n—|n/2] —1<3/2n

/

< S _(3/4n% +cn?/c
n—2
(3/4+c/c'In

i
=c'n
n—2

)

Logo para n > ng := 14 temos n/(n— 2) < 7/6 e temos
Tn) <cn(7/8+c/c’)<c'n

para um ¢’ > 8c.

4.3. Corte minimo

CORTE MINIMO

arestas.
Solugcao Uma particdo V=SU (V\ S).

Objetivo Minimizar o peso do corte >_

Entrada Grafo ndo-direcionado G = (V, A) com pesos ¢ : A — Z, nas

{u,vieA C{u’v}.
ues,veVv\S

Solugoes deterministicas:

e Calcular a drvore de Gomory-Hu: a aresta de menor peso define o corte

minimo.

e Calcular o corte minimo (via fluxo méximo) entre um vértice fixo s € V
e todos outros vértices: o menor corte encontrado é o corte minimo.

Custo em ambos casos: O(n) aplicagoes de um algoritmo de fluxo méximo,
i.e. O(mn?log(n/m)) no caso do algoritmo de Goldberg-Tarjan.

127

ST W N =

4. Algoritmos randomizados

Solucao randomizada para pesos unitarios No que segue supomos que 0s
pesos sdo unitarios, i.e. cq = 1 para a € A. Uma abordagem simples é
baseada na seguinte observacao: se escolhemos uma aresta que nao faz parte
de um corte minimo, e contraimo-la (i.e. identificamos os vértices adjacentes),
obtemos um grafo menor, que ainda contém o corte minimo. Se escolhemos
uma aresta randomicamente, a probabilidade de por acaso escolher uma aresta
de um corte minimo é baixa.

cmr (G) :=
while G possui mais que dois vértices
escolhe uma aresta {u,v} randémicamente
identifica uw e vem G
end while
return o corte definido pelos dois vértices em G

Exemplo 4.2
Uma sequencia de contragoes (das arestas vermelhas).

LA

Dizemos que uma aresta “sobrevive” uma contragao, caso ele nao foi contraido.

¢

Lema 4.5
A probabilidade que os k arestas de um corte minimo sobrevivem n — t con-
tracoes (de n para t vértices) é Q((t/n)?).

Prova. Como o corte minimo é k, cada vértice possui grau pelo menos k, e
portanto o nimero de arestas apds iteragao 0 < i < n — t e maior ou igual
a k(n —1)/2 (com a convencdo que a “iteragdo 0” produz o grafo inicial).
Supondo que as k arestas do corte minimo sobreviveram a iteragao i, a pro-
babilidade de nao sobreviver a préxima iteragao é k/(k(n—1)/2) =2/(n—1).

128

4.3. Corte minimo

Logo, a probabilidade do corte sobreviver todas iteragoes é ao menos

2 n—i-2
H]_n—i: H n—i

0<i<n—t 0<i<n—t

S m=2)m=3)-t=1 [t) ,
Conm—1)t+1 _(2>/<2)—Q((t/n)).

Teorema 4.7
Dado um corte minimo C de tamanho k, a probabilidade do algoritmo cmr
retornar C é Q(n=2).

Prova. Caso o grafo possui n vértices, o algoritmo termina em n—2 iteragoes:
podemos aplicar o lema acima com t = 2. |

Observagao 4.3

O que acontece se repetirmos o algoritmo algumas vezes? Seja C; uma variavel
que indica se o corte minimo foi encontrado repeti¢do i. Temos P[C; = 1] >
2n~2 e portanto P[C; = 0] < 1—2n"2. Para kn? repeticoes, vamos encontrar
C =) C; cortes minimos com probabilidade

PIC>1]=1-P[C=0>1—(1—-2n"2)" >1_¢ 2k
Para k = logn obtemos P[C > 1] > 1 —n"2. O

Logo, se repetimos esse algoritmo n? logn vezes e retornamos o menor corte
encontrado, achamos o corte minimo com probabilidade razoavel. Se a imple-
mentacdo realiza uma contracdo em O(n) o algoritmo possui complexidade
O(n?) e com as repeticdes em total O(n*logn).

Implementacao de contracoes Para garantir a complexidade acima, uma
contracao tem que ser implementada em O(n). Isso é possivel tanto na repre-
sentacao por uma matriz de adjacéncia, quanto na representagao pela listas
de adjacéncia. A contracao de dois vértices adjacentes resulta em um novo
vértice, que é adjacente aos vizinhos dos dois. Na contragao arestas de um
vértice com si mesmo sao removidas. Muiltiplas arestas entre dois vértices tem
que ser mantidas para garantir a corretude do algoritmo.

Um algoritmo melhor O problema principal com o algoritmo acima é que
nas ultimas iteragoes, a probabilidade de contrair uma aresta do corte minimo
é grande. Para resolver esse problema, executaremos o algoritmo duas vezes
para instancias menores, para aumentar a probabilidade de nao contrair o
corte minimo.

129

4. Algoritmos randomizados

cmr2(G) :=
if (G possui menos que 6 vértices)
determina o corte minimo C por exaustao

return C
else
t:= [1 —|—n/\ﬁ—‘

seja Gy o resultado de n—t contracoes em G
seja Gz o resultado de n—t contracoes em G
Ci:=cmr2(Gy)
Cz:=cmr2(Gy)
return o menor dos dois cortes C; e C;

end if

Esse algoritmo possui complexidade de tempo O(n? logn) e encontra um corte
minimo com probabilidade Q(1/logn).

Lema 4.6

A probabilidade de um corte minimo sobreviver t = [1 +n/ ﬁ—‘ contragoes é

no minimo 1/2.

Prova. Pelo lema 4.5 a probabilidade é

T/ V2| (1 nv2] - J0+n/VD/v2) V24n

S 1
nn—1) = nn-—1) 2m—=1)~"2n 2°
|

Seja P(t) a probabilidade que um corte com k arestas sobrevive caso o grafo
possui t vértices. Temos

Plo corte sobrevive em Hy] > 1/2P([1 + t/\ﬁb
Plo corte sobrevive em Hy] > 1/2P({1 + t/\fzb
Plo corte nao sobrevive em Hy e Hy] < (1 —1/2P([1 + t/\fZ—‘))?
P(t) = Plo corte sobrevive em Hy ou Ha] > 1— (1 —1/2P([1 +t/\f2-‘))?

_ P(ﬁ +t/\/ﬂ) - 1/4P([1 +t/ﬁb2

130

4.4. Teste de primalidade

Para resolver essa recorréncia, define Q(k) = P(\/Zk) com base Q(0) =1 para
obter a recorréncia simplificada

Qk+1)=P2") —p([1 +\/§kb—1/4p([1 +ﬁkb2
~ P(VZY) = P(VZ)2 /4 = Q) — Q(k)?/4
e depois R(k) =4/Q(k) — 1 com base R(0) = 3 para obter

4 4 4
R(k+1)+1 R(k)+1 (R(k)+1)2

& R(k+1)=R(k) +1+1/R(k).

R(k) satisfaz
k<R(k)<k+Hg_1+3

Prova. Por indugdo. Para k = 1 temos 1 < R(1) =13/3 <1+ Hp+3 =5.
Caso a HI esté satisfeito, temos

R(k+1)=R(k)+1+1/R(k) >R(k)+1>k+1
R(k+1)=R(k)+1+1/R(k) <k+H 1 +3+1+1/k=(k+1)+Hr+3

|
Logo, R(k) = k + O(logk), e com isso Q(k) = O(1/k) e finalmente P(t) =
O(1/logt).
Para determinar a complexidade do algoritmo cmr2 observe que temos O(logn)
niveis recursivos e cada contraciao pode ser feito em tempo O(n?), portanto

T, = 2T([1 +n/\/ﬂ) +o(n2).

Aplicando o teorema de Akra-Bazzi obtemos a equacio caracteristica 2(1/v2)P =
1 com solugao p =2 e

" cu?

Tn € O(n?(1 +L ?du)) =0O(n?logn).

4.4. Teste de primalidade
Um problema importante na criptografia é encontrar niimeros primos grandes

(p.ex. RSA). Escolhendo um nidmero n randémico, qual a probabilidade de n
ser primo?

131

T W N =

4. Algoritmos randomizados

Teorema 4.8 (Hadamard [25], Vallée Poussin [40])
(Teorema dos nimeros primos.)
Para m(n) = {p < n | p primo}| temos

7(n)

riheo n/Inn -
(Em particular 7t(n) = ©(n/Inn).)

Portanto, a probabilidade de um ndmero randémico no intervalo [2,n] ser
primo assintoticamente é somente 1/Inn. Entao para encontrar um ntmero
primo, temos que testar se n é primo mesmo. Observe que isso nao é igual
a fatoragao de n. De fato, temos testes randomizados (e deterministicos) em
tempo polinomial, enquanto ndo sabemos fatorar nesse tempo. Uma aborda-
gem simples é testar todos os divisores:
Primol(n) :=

for 1=2,3,5,7,...,|v/n| do

if in return ‘‘Nao’’

end for

return ‘‘Sim’’
O tamanho da entrada n é t = logn bits, portanto o nimero de iteragoes
é O(y/n) = B(2'/2) e a complexidade Q(2'/2) (mesmo contando o teste de
divisdo com O(1)) desse algoritmo é exponencial. Para testar a primalidade
mais eficiente, usaremos uma caracteristica particular dos ntimeros primos.

Teorema 4.9 (Fermat, Euler)
Para p primo e a > 0 temos

a’? =a mod p.
Prova. Por inducao sobre a. Base: evidente. Seja a? = a. Temos
p .
P i
(a+T1) Z (1) a
0<i<p

epara0<i<p

(p) _plp—1--(p—it1)
P~ i—1)---1

porque p é primo. Portanto (a+1)P =aP +1e
(a+T)P—(a+1)=ad?P+T1—(a+1)=a?—-a=0.

(A ultima identidade é a hipdtese da indugdo.) |

132

T W N =

4.4. Teste de primalidade

Definigao 4.4
Para a,b € Z denotamos com (a,b) o maior divisor em comum (MDC) de a
eb. No caso (a,b) =1, a e b sdo coprimo.

Teorema 4.10 (Divisdo modulo p)
Se p primo e (b,p) =1

ab=cb modp=a=c modp.

(Em palavras: Numa identidade modulo p podemos dividir por nimeros co-
primos com p.)

Prova.

ab=cd & JFkab+kp =cb
& Jka+kp/b=c

Como a,c € Z, temos kp/b € Z e blk ou blp. Mas (b,p) = 1, entao blk.
Definindo k’ := k/b temos Ik’ a + k’p =¢, i.e. a=c. [|
Logo, para p primo e (a,p) =1 (em particular se 1 < a < p)

aP'=1 mod p. (4.1)

Um teste melhor entao é

Primo2(n) :=

seleciona ae€[l,n—1] randomicamente

if (a,n)#1 return ‘‘N&o’’

if a»'=1 return ‘‘Sim’’

return ‘‘Nao’’
Complexidade: Uma multiplicacao e divisdao com logn digitos é possivel em
tempo O(log2 n). Portanto, o primeiro teste (o algoritmo de Euclides em logn
passos) pode ser feito em tempo O(log3 1) e o segundo teste (exponenciagao
modular) é possivel implementar com O(logn) multiplicagoes (exercicio!).
Corretude: O caso de uma resposta “Nao” é certo, porque n nao pode ser
primo. Qual a probabilidade de falhar, i.e. do algoritmo responder “Sim”,
com n composto? O problema é que o algoritmo falha no caso de ndmeros
Carmichael.

Definicao 4.5

Um ndmero composto n que satisfaz a™~' =1 mod a é um ndmero pseudo-
primo com base a. Um nimero Carmichael é um nimero pseudo-primo para
qualquer base a com (a,n) =1.

133

N O Ok W N

4. Algoritmos randomizados

Os primeiros nimeros Carmichael sdo 561 = 3 x 11 x 17, 1105 e 1729 (veja
OEIS A002997). Existe um ndmero infinito deles:

Teorema 4.11 (Alford, Granville e Pomerance [2])

Seja C(n) o nimero de niimeros Carmichael até n. Assintoticamente temos
C(n) >n?/7.

Exemplo 4.3

C(n) até 10'° (OEIS A055553):

n 1 2 3 4 5 6 7 8 9 10
C(10™) 0 0 1 7 16 43 105 255 646 1547 . 0
[(A0M%7] 2 4 8 14 27 52 100 194 373 720

Caso um nimero n nao é primo, nem nimero de Carmichael, mais que n/2 dos
a € [l,n—1] com (a,n) =1 néo satisfazem (4.1) ou seja, com probabilidade
> 1/2 acharemos um testemunha que n é composto. O problema é que no
caso de nimeros Carmichael nao temos garantia.

Teorema 4.12 (Raiz modular)
Para p primo temos

x*=1 modp=x=41 mod p.

O teste de Miller-Rabin usa essa caracteristica para melhorar o teste acima.

. o t
Podemos escrever n — 1 = 2%u para um u impar. Temos a™ ' = (a%)? = 1.
Portanto, se a™ ' =1,

Ou a*'=1 mod p ou existe um menor i € [0, t] tal que (au)Zi =1

Caso p é primo, /(a%*)2" = (au)ziq = —1 pelo teorema (4.12) e a minimali-
dade de 1 (que exclui os caso = 1). Por isso:

Definicao 4.6
Um ntmero n é um pseudo-primo forte com base a caso

Ou a* =1 mod p ou existe um menor i € [0,t — 1] tal que ((1“)2i =-1
(4.2)

Primo3(n) :=
seleciona a € [l,n—1] randémicamente
if (a,n)#1 return ‘‘Nao’’
seja n—1=2%
if a*=1 return ‘‘Sim

b

)

if (a“)zi =-—1 para um i€ [0,t—1] return ‘‘Sim’
return ‘‘Nao’’

134

4.5. Exercicios

Teorema 4.13 (Monier [32], Rabin [35])
Caso . e composto e impar, mais que 3/4 dos a € [I,n— 1] com (a,n) =1
nao satisfazem o critério (4.2) acima.

Portanto com k testes randémicos, a probabilidade de falhar P[Sim | n composto] <
(1/4)% = 272*. Na pratica a probabilidade é menor:

Teorema 4.14 ([10])
A probabilidade de um tunico teste falhar para um ntmero com k bits e <
k2427\/E~

Exemplo 4.4
Para n € [2477,2590 _1] a probabilidade de nio detectar um n composto com
um tnico teste é menor que

4992 x 42-VA99 2722
O

Teste deterministico O algoritmo pode ser convertido em um algoritmo de-
terministico, testando ao menos 1/4 dos a com (a,n) = 1. De fato, temos
para menor o testemunha w(n) de um ndmero n ser composto

Se 0 HGR ¢ verdade w(n) < 2log”n (4.3)

com HGR a hipétese generalizada de Riemann (uma conjetura aberta). Su-
pondo HGR, obtemos um algoritmo deterministico com complexidade O (10g5 n).
Em 2002, Agrawal, Kayal e Saxena [1] descobriram um algoritmo deterministico
(sem a necessidade da HGR) em tempo (5(10g12 n) que depois foi melhorado
para O(log® n).

Para testar: http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.
html.

4.5. Exercicios

Exercicio 4.1
Encontre um primo p e um valor b tal que a identidade do teorema 4.10 nao
¢ correta.

Exercicio 4.2
Encontre um niimero p nao primo tal que a identidade do teorema 4.12 nao é
correta.

135

http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.html
http://www.jjam.de/Java/Applets/Primzahlen/Miller_Rabin.html

5. Complexidade e algoritmos parametrizados

A complexidade de um problema geralmente é resultado de diversos elementos.
Um algoritmo parameterizado separa explicitamente os elementos que tornam
um problema dificil, dos que sao simples de tratar. A andlise da complezidade
parameterizada quantifica essas partes separadamente. Por isso, a complexi-
dade parameterizada é chamada uma complexidade “de duas dimensoes”.

Exemplo 5.1

O problema de satisfatibilidade (SAT) é NP-completo, i.e. ndo conhecemos um
algoritmo cuja complexidade cresce somente polinomialmente com o tamanho
da entrada. Porém, a complexidade deste problema cresce principalmente com
o numero de variaveis, e nao com o tamanho da entrada: com k varidveis e en-
trada de tamanho n solucdo trivial resolve o problema em tempo O(2*n). Em
outras palavras, para parametro k fixo, a complexidade é linear no tamanho
da entrada. O

Definicao 5.1

Um problema que possui um pardametro k € N (que depende da instancia) e
permite um algoritmo de complexidade f(k)[x|°(") para entrada x e com f uma
fungdo arbitréria, se chama tratdvel por pardmetro fixo (ingl. fixed-parameter
tractable, fpt). A classe de complexidade correspondente é FPT.

Um problema tratavel por parametro fixo se torna trativel na pratica, se o
nosso interesse sao instancias com parametro pequeno. E importante observar
que um problema permite diferentes parameterizagoes. O objetivo de projeto
de algoritmos parameterizados consiste em descobrir para quais parametros
que sao pequenos na pratica o problema possui um algoritmo parameterizado.
Neste sentido, o algoritmo parameterizado para SAT néo é interessante, por-
que o numero de varidveis na pratica é grande.

A seguir consideramos o problema NP-complete de cobertura por vértices. Uma
versao parameterizada é

k-COBERTURA POR VERTICES
Instancia Um grafo nio-direcionado G = (V, A) e um ntimero k'.

Solucao Uma cobertura C, i.e. um conjunto C C V tal que Va € A :

137

S O W N =

T W N =

5. Complexidade e algoritmos parametrizados

anC#0.

Parametro O tamanho k da cobertura.

Objetivo Minimizar |C|.

Abordagem com forga bruta:

mve(G = (V,A)) :=

if A=0 return 0

seleciona aresta {u,v}€ A ndo coberta

Ci ={uw}Umve(G \ {u})

Cy = {v}Umve(G\ {v})

return a menor entre as coberturas C; e Cy
Supondo que a selecao de uma aresta e a reducao dos grafos é possivel em
O(n), a complexidade deste abordagem é dado pela recorréncia

Tn = ZTn—] + O(Tl)

com solucdo T,, = O(2™). Para achar uma solu¢do com no méximo k vértices,
podemos podar a arvore de busca definido pelo algoritmo mvc na profundidade
k. Isso resulta em

Teorema 5.1

O problema k-cobertura por vértices é tratdvel por parametro fixo em O(2%n).

Prova. Até o nivel k vamos visitar O(2¥) vértices na arvore de busca, cada
um com complexidade O(n). |
O projeto de algoritmos parameterizados frequentemente consiste em

e achar uma parameterizacao tal que o parte super-polinomial da com-
plexidade é limitada para um parte do problema que depende de um
parametro k que é pequeno na pratica;

e encontrar o melhor algoritmo possivel para o parte super-polinomial.

Exemplo 5.2
Considere o algoritmo direto (via uma drvore de busca, ou backtracking) para
SAT.

BT—SAT (@,) :=
if « é atribuigdo completa: return @(«)
if alguma clatusula nao é satisfeita: return false
if BT-SAT(@,«l1) return true
return BT SAT (¢, «0)

Introduzimos k na entrada, porque k mede uma caracteristica da solucdo. Para evitar
complexidades artificias, entende-se que k nestes casos é codificado em undrio.

138

1
2
3

Figura 5.1.: Subproblemas geradas pela decisdo da inclusao de um vértice v.
Vermelho: vértices selecionadas para a cobertura.

(0 e al denotam extensdes de uma atribuicdo parcial das varidveis.)
Aplicado para 3SAT, das 8 atribuigbes por clatisula podemos excluir uma que
ndo a satisfaz. Portanto a complexidade de BT-SAT é O(7™/3) = O(\3ﬁn) =
0(1.9129™). (Exagerando — mas nao mentindo — podemos dizer que isso é
uma aceleragao exponencial sobre a abordagem trivial que testa todas 2™
atribuigoes.)

O melhor algoritmo para 3-SAT possui complexidade O(1.324™). %

Um algoritmo melhor para cobertura por vértices Consequéncia: O projeto
cuidadoso de uma &arvore de busca pode melhorar a complexidade. Vamos
aplicar isso para o problema de cobertura por vértices.

Um melhor algoritmo para a k-cobertura por vértices pode ser obtido pelas
seguintes observacoes

e Caso o grau maximo A de G é 2, o problema pode ser resolvido em
tempo O(n), porque G é uma cole¢ao de caminhos simples e ciclos.

e (Caso contrario, temos pelo menos um vértice v de grau 6, > 3. Ou esse
vértice faz parte da cobertura minima, ou todos seus vizinhos N(v) (veja
figura 5.1).

mvce’ (G) =

if A(G) <2 then
determina a cobertura minima C em tempo O(n)

139

© 00~ O U

5. Complexidade e algoritmos parametrizados

return C

end if

seleciona um vértice v com grau 6, >3

Ci ={Umve/(G\ {v})

Cy :=N(v)Umve'(G\ N(v))

return a menor cobertura entre C; e C
O algoritmo resolve o problema de cobertura por vértices minima de forma
exata. Se podamos a arvore de busca apés selecionar k vértices obtemos um
algoritmo parameterizado para k-cobertura por vértices. O ntimero de vértices
nessa arvore €

Vi<Viq1+4+Vig+1.

Lema 5.1
A solucdo dessa recorréncia é Vi = 0(1.38031).

Teorema 5.2

O problema k-cobertura por vértices é tratdvel por parametro fixo em O(1.3803%n).

Prova. Consideragoes acima com trabalho limitado por O(n) por vértice na
arvore de busca. |
Prova. (Do lema acima.) Com o ansatz V; < c¢' obtemos uma prova por
inducao se para um i > ig
Vi<Vig4+Vig+i<c T4t p1<cd

e et = -1 >1

= ct-c3-1>0
(O dltimo passo é justificado porque para ¢ > 1 e i suficientemente grande o

produto vai ser > 1.) ¢* —c3 — 1 possui uma tinica raiz positiva ~ 1.32028 e
para ¢ > 1.3803 temos ¢ —c? —1>0. |

140

A. Material auxiliar

Definicoes

Definicao A.1

Uma relacao binaria R é polinomialmente limitada se
3p € poly : V(x,y) € Ryl < p(lxl)

Definicao A.2 (Pisos e tetos)
Para x € R o piso |x] é o maior nimero inteiro menor que x e o teto [x]| é o
menor nimero inteiro maior que x. Formalmente

[x] = max{y € Zy < x}
[x] = minfy € Zly > x}

O parte fraciondrio de x é {x} = x — [x].
Observe que o parte fraciondrio sempre é positivo, por exemplo {—0.3} = 0.7.

Proposicao A.1 (Regras para pisos e tetos)
Pisos e tetos satisfazem

x < [x] <x+1 (A1)
x—1<|x] <x (A.2)

A.1. Algoritmos

Solucoes do problema da mochila com Programacido Dinamica

Mochila maxima (Knapsack)
e Seja S*(k,v) a solucdo de tamanho menor entre todas solugdes que
— usam somente itens S C [1,k] e

— tem valor exatamente v.

e Temos
S*(k,0) =0
S*(1,vi) ={1}
S$*(1,v) = undef para v # vq

141

A. Material auxiliar

M(k, 1)

Entrada |X1 X2 X3 X4 X5| X6 | | an

Medianos I:‘ I:‘ I:‘
Mediano

Particao Xp <m | m| Xi > m |
i
Recursao k<i: k=1: k>1:
M(k,i—1) Encontrado M(k —i,n —1)

Figura A.1.: Funcionamento do algoritmo recursivo para selegao.

Mochila maxima (Knapsack)

e S* obedece a recorréncia

S$*(k,v) = min

tamanho

S*(k—1,v—w)U{k} sevk <veS*(k—1,v—vy) definido
S*(k—1,v)

Menor tamanho entre os dois

Y titt< Yt

ieS*(k—1,v—vy) ieS*(k—1,v)

Melhor valor: Escolhe S*(n,v) com o valor mdximo de v definido.

e Tempo e espaco: O(m) ; vi).

Selecdao Dado um conjunto de nimeros, o problema da selegdo consiste
em encontrar o k-ésimo maior elemento. Com ordenacao o problema possui
solucdo em tempo O(nlogn). Mas existe um outro algoritmo mais eficiente.
Podemos determinar o mediano de grupos de cinco elementos, e depois o re-
cursivamente o mediano m desses medianos. Com isso, o algoritmo particiona
o conjunto de nimeros em um conjunto L de niimeros menores que m e um
conjunto R de nidmeros maiores que m. O mediano m é na posi¢ao i := |L|41
desta sequéncia. Logo, caso i = k m é o k-ésimo elemento. Caso i > k te-
mos que procurar o k-ésimo elemento em L, caso i < k temos que procurar o
k — i-ésimo elemento em R (ver figura A.1).

142

A.1. Algoritmos

O algoritmo ¢ eficiente, porque a selecao do elemento particionador m garante
que o subproblema resolvido na segunda recursao é no maximo um fator 7/10
do problema original. Mais preciso, o nimero de medianos é maior que n/5,
logo o nimero de medianos antes de m é maior que n/10 — 1, o nimero de
elementos antes de m é maior que 3n/10—3 e com isso o ntimero de elementos
depois de m é menor que 7n/10+ 3. Por um argumento similar, o nimero de
elementos antes de m é também menor que 7n/10 + 3. Portanto temos um
custo no caso pessimista de

T) = O(1) sen <5
| T(n/5]) +©(7n/10 + 3) + ©(n) caso contrario

ecom 5P+ (7/10)P =1 temos p =log, 7 ~ 0.84 ¢

oo)

=OMmP(1+ (' P/(1—p)—1/(1—p)))
=0(cinP +con) =O(n).

Algoritmo A.1 (Selecao)
Entrada Numeros x1,...,Xn, posi¢ao k.

Saida O k-ésimo maior ntmero.

1 S(ky{x1,...,xn}) ==

2 if n<5

3 calcula e retorne o k ésimo elemento

4 end if

5 my := median(Xsit1,. .., Xmin(5i+5,n)) para 0<i< [n/5].
6 —S(H—TL/S] /2],m1,...,mrn/5],1)

7 Li={xi|xi<m1<i<n}

8 R:={xi[xi >m,1 <i<n}

9 i:=|L+1
10 if i=%k then

11 return m

12 else if 1>k then
13 return S(k,L)

14 else

15 return S(k—1i,R)
16 end if

143

http://www.wolframalpha.com/input/?i=solve(5**-p%2B(7/10)**p=1)

A. Material auxiliar

144

B. Técnicas para a analise de algoritmos

Anadlise de recorréncias

Teorema B.1 (Akra-Bazzi e Leighton)
Dado a recorréncia

T(x) = o(1) se x < Xo
B Z]gigk aiT(bix + hy(x)) + g(x) caso contrario

com constantes a; > 0, 0 < b; < 1 e fungoes g, h, tal que
l9’(x)l € O(x%); [ha(x)] < x/log' "€ x

para um € > 0 e a constante x¢ e suficientemente grande

T(x) € © <xp (1 n Jx 3}5&1 du))
1

com p tal que Z1§i§k aibf =1.

Teorema B.2 (Graham, Knuth e Patashnik [24])
Dado a recorréncia

T(n) = o(1) n < maxi<i<k di
B > i xT(n—di) caso contrério

seja o a raiz com a maior valor absoluto com multiplicidade 1 do polinomio

caracteristico
d d—d; d—dy

zo—xzt Tt — e — ozt
com d = maxy di. Entao

T(n) =0(nta™) = 0*(«m).

145

Bibliografia

Manindra Agrawal, Neeraj Kayal e Nitin Saxena. “PRIMES is in P”.
Em: Annals of Mathematics 160.2 (2004), pp. 781-793.

W. R. Alford, A. Granville e C. Pomerance. “There are infinitely many
Carmichael numbers”. Em: Annals Math. 140 (1994).

H. Alt et al. “Computing a maximum cardinality matching in a bipartite
graph in time O(n'->y/mlogn)”. Em: Information Processing Letters 37
(1991), pp. 237-240.

Sanjeev Arora e Boaz Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, 2009.

Claude Berge. “Two theorems in graph theory”. Em: Proc. National
Acad. Science 43 (1957), pp. 842-844.

G. S. Brodal, R. Fagerberg e R. Jacob. Cache Oblivious Search Trees
via Binary Trees of Small Height. Rel. téc. RS-01-36. BRICS, 2001.

Andrei Broder e Michael Mitzenmacher. “Network applications of Bloom
filter: A survey”. Em: Internet Mathematics 1.4 (2003), pp. 485-509.

Bernhard Chazelle. “A Minimum Spanning Tree Algorithm with Inverse-
Ackermann Type Complexity”. Em: Journal ACM 47 (2000), pp. 1028—
1047.

Thomas H. Cormen et al. Introduction to Algorithms. 3rd. The MIT
Press, 2009.

Ivan Damgard, Peter Landrock e Carl Pomerance. “Average case er-
ror estimates for the strong probable prime test”. Em: Mathematics of
computation 61.203 (1993), pp. 177-194.

Brian C. Dean, Michel X. Goemans e Nicole Immorlica. “Finite ter-
mination of ”augmenting path”algorithms in the presence of irrational
problem data”. Em: ESA’06: Proceedings of the 14th conference on An-
nual European Symposium. Zurich, Switzerland: Springer-Verlag, 2006,
pp- 268-279. DOI: http://dx.doi.org/10.1007/11841036_26.

R. Dementiev et al. “Engineering a Sorted List Data Structure for 32
Bit Keys”. Em: Workshop on Algorithm Engineering € Ezperiments.
2004, pp. 142-151.

147

http://dx.doi.org/http://dx.doi.org/10.1007/11841036_26

Bibliografia

[13]

[14]

[15]

148

J. Edmonds. “Paths, Trees, and Flowers”. Em: Canad. J. Math 17
(1965), pp. 449-467.

J. Edmonds e R. Karp. “Theoretical improvements in algorithmic efi-
ciency for network flow problems”. Em: JACM 19.2 (1972), pp. 248—
264.

Jend Egervéry. “Matrixok kombinatorius tulajdonsagairdl (On combi-
natorial properties of matrices)”. Em: Matematikai és Fizikai Lapok 38
(1931), pp. 16-28.

T. Feder e R. Motwani. “Clique partitions, graph compression and
speeding-up algorithms”. Em: Proceedings of the Twenty Third Annual
ACM Symposium on Theory of Computing (23rd STOC). 1991, pp. 123
133.

T. Feder e R. Motwani. “Clique partitions, graph compression and
speeding-up algorithms”. Em: Journal of Computer and System Sci-
ences 51 (1995), pp. 261-272.

L. R. Ford e D. R. Fulkerson. “Maximal flow through a network”. Em:
Canadian Journal of Mathematics 8 (1956), pp. 399-404.

C. Fremuth-Paeger e D. Jungnickel. “Balanced network flows
VIII: a revised theory of phase-ordered algorithms and the
O(y/mnmlog(n?/m)/logn bound for the nonbipartite cardinality mat-
ching problem”. Em: Networks 41 (2003), pp. 137-142.

Martin Fiirer e Balaji Raghavachari. “Approximating the minimu-
degree steiner tree to within one of optimal”. Em: Journal of Algorithms
(1994).

H. N. Gabow. “Data structures for weighted matching and nearest com-

mon ancestors with linking”. Em: Proc. of the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms (1990), pp. 434-443.

Ashish Goel, Michael Kapralov e Sanjeev Khanna. “Perfect Matchings in
O(nlogn) Time in Regular Bipartite Graphs”. Em: STOC 2010. 2010.

A. V. Goldberg e A. V. Karzanov. “Maximum skew-symmetric flows and
matchings”. Em: Mathematical Programming A 100 (2004), pp. 537-568.

Ronald Lewis Graham, Donald Ervin Knuth e Oren Patashnik. Concrete
Mathematics: a foundation for computer science. Addison-Wesley, 1988.

J. Hadamard. “Sur la distribution des zéros de la fonction zeta(s) et ses
conséquences arithmétiques”. Em: Bull. Soc. math. France 24 (1896),
pp. 199-220.

Bibliografia

Bernhard Haeupler, Siddharta Sen e Robert E. Tarjan. “Heaps simpli-
fied”. Em: (Preprint) (2009). arXiv:0903.0116.

J. E. Hopcroft e R. Karp. “An n®/2 algorithm for maximum matching
in bipartite graphs”. Em: SIAM J. Comput. 2 (1973), pp. 225-231.

Michael J. Jones e James M. Rehg. Statistical Color Models with Ap-
plication to Skin Detection. Rel. téc. CRL 98/11. Cambridge Research
Laboratory, 1998.

John R. Black Jr. e Charles U. Martel. Designing Fast Graph Data
Structures: An Ezxperimental Approach. Rel. téc. University of Califor-
nia, Davis, 1998.

Haim Kaplan e Uri Zwick. “A simpler implementation and analysis of
Chazelle’s soft heaps”. Em: SODA ’09: Proceedings of the Nineteenth
Annual ACM -SIAM Symposium on Discrete Algorithms. New York,
New York: Society for Industrial e Applied Mathematics, 2009, pp. 477—
485.

H. W. Kuhn. “The Hungarian Method for the assignment problem”.
Em: Naval Rejsearch Logistic Quarterly 2 (1955), pp. 83-97.

L. Monier. “Evaluation and comparison of two efficient probabilistic pri-
mality testing algorithms”. Em: Theoret. Comp. Sci. 12 (1980), pp. 97—
108.

J. Munkres. “Algorithms for the assignment and transporation pro-
blems”. Em: J. Soc. Indust. Appl. Math 5.1 (1957), pp. 32-38.

Joon-Sang Park, Michael Penner e Viktor K Prasanna. “Optimizing
Graph Algorithms for Improved Cache Performance”. Em: IEEFE Trans.
on Parallel and Distributed Systems 15.9 (2004).

Michael O. Rabin. “Probabilistic algorithm for primality testing”. Em:
J. Number Theory 12 (1980), pp. 128-138.

Emma Roach e Vivien Pieper. “Die Welt in Zahlen”. Em: Brand eins 3
(2007).

J.R. Sack e J. Urrutia, eds. Handbook of computational geometry. Else-
vier, 2000.

Alexander Schrijver. Combinatorial optimization. Polyhedra and effici-
ency. Vol. A. Springer, 2003.

Terrazon. Soft Errors in Electronic Memory — A White Paper. Rel. téc.
Terrazon Semiconductor, 2004.

C.-J. de la Vallée Poussin. “Recherches analytiques la théorie des nom-
bres premiers”. Em: Ann. Soc. scient. Bruzelles 20 (1896), pp. 183-256.

149

Bibliografia

[41] J. W. J. Williams. “Algorithm 232: Heapsort”. Em: Comm. ACM 7.6
(1964), pp. 347-348.

[42] Norman Zadeh. “Theoretical Efficiency of the Edmonds-Karp Algorithm
for Computing Maximal Flows”. Em: J. ACM 19.1 (1972), pp. 184-192.

[43] Uri Zwick. “The smallest networks on which the Ford-Fulkerson ma-
ximum flow procedure may fail to terminate”. Em: Theoretical Com-
puter Science 148.1 (1995), pp. 165 —170. pOI: DOI:10.1016/0304~
3975(95)00022-0.

150

http://dx.doi.org/DOI: 10.1016/0304-3975(95)00022-O
http://dx.doi.org/DOI: 10.1016/0304-3975(95)00022-O

Indice

P || Cmax, 108
arvore
binomial, 10
van Emde Boas, 28-37
arvore geradora minima, 4
algoritmo de Prim, 4
APX, 85
NPO, 84
PO, 84

Akra, Louay, 139
Akra-Bazzi
método de, 139
algoritmo
e-aproximativo, 85
T-aproximativo, 85
de aproximacao, 83
guloso, 85
parameterizado, 131
randomizado, 113
aproximagao
absoluta, 85
relativa, 85

Bazzi, Mohamad, 139
bin packing

empacotamento unidimensional,

101
Bloom, Burton Howard, 81

caminho
alternante, 61
mais curto, 4, 37

algoritmo de Dijkstra, 4, 37

caminho mais gordo
algoritmo de, 45-46

circulagao, 38

cobertura por vértices, 86
aproximagao, 86

complexidade
parameterizada, 131

cuco hashing, 79

dicionério, 73
Dijkstra

algoritmo de, 4, 37
Dijkstra, Edsger Wybe, 4

Edmonds, Jack R., 43
Edmonds-Karp

algoritmo de, 43-45
empacotamento unidimensional, 101
emparelhamento, 56

de peso maximo, 56

maximo, 56

perfeito, 56

de peso minimo, 56

enderegamento aberto, 77

fila de prioridade, 4-37
com lista ordenada, 5
com vetor, 5
filtro de Bloom, 81
fluxo, 39
s—t méaximo, 39
com fontes e destinos multiplos,
46
de menor custo, 54

151

Indice

formulacao linear, 39
Ford, Lester Randolph, 39
Ford-Fulkerson

algoritmo de, 39-43
Fulkerson, Delbert Ray, 39
funcao de otimizagao, 83
fungédo hash, 73

com divisao, 75

com multiplicagao, 75

universal, 76
fungao objetivo, 83

grafo residual, 41

hashing
com enderegamento aberto, 77
com listas encadeadas, 73
cuco, 79
perfeito, 76
universal, 75
heap, 4-37
binério, 7, 37
implementagao, 10
binomial, 10, 23, 37
custo armotizado, 14
Fibonacci, 15
rank-pairing, 19, 25

Karp, Richard Manning, 43
Knapsack, 88

método de divisao, 75
método de multiplicacao, 75

ordem
van Emde Boas, 29

permutagao, 77
piso, 135
Prim

algoritmo de, 4
Prim,Robert Clay, 4

152

problema

da mochila, 135

de avaliacao, 84

de construgao, 84

de decisao, 84
problema da mochila, 88, 135
problema de otimizagao, 83

relacao
polinomialmente limitada, 84

SAT, 131
satisfabilidade
de férmulas booleanas, 131
semi-arvore, 20
sequenciamento
em processores paralelos, 108

teto, 135
torneio, 19
tratavel por parametro fixo, 131

uniforme, 77

vértice
emparelhado, 61
livre, 61

valor hash, 73

van Emde Boas, Peter, 30

vertex cover, 86
aproximacao, 86

Williams, J. W. J., 7

	Conteúdo
	Algoritmos em grafos
	Representação de grafos
	Caminhos e ciclos Eulerianos
	Filas de prioridade e heaps
	Heaps binários
	Heaps binomiais
	Heaps Fibonacci
	Rank-pairing heaps
	Árvores de van Emde Boas
	Tópicos
	Exercícios

	Fluxos em redes
	Algoritmo de Ford-Fulkerson
	O algoritmo de Edmonds-Karp
	O algoritmo ``caminho mais gordo'' (``fattest path'')
	O algoritmo push-relabel
	Variações do problema
	Aplicações
	Outros problemas de fluxo
	Exercícios

	Emparelhamentos
	Aplicações
	Grafos bi-partidos
	Emparelhamentos em grafos não-bipartidos
	Exercícios

	Tabelas hash
	Hashing com listas encadeadas
	Hashing com endereçamento aberto
	Cuco hashing
	Filtros de Bloom

	Algoritmos de aproximação
	Problemas, classes e reduções
	Medidas de qualidade
	Técnicas de aproximação
	Algoritmos gulosos
	Aproximações com randomização

	Esquemas de aproximação
	Aproximando o problema da árvore de Steiner mínima
	Aproximando o PCV
	Aproximando problemas de cortes
	Aproximando empacotamento unidimensional
	Um esquema de aproximação assintótico para min-EU

	Aproximando problemas de sequênciamento
	Um esquema de aproximação para PC_max

	Exercícios

	Algoritmos randomizados
	Teoria de complexidade
	Amplificação de probabilidades
	Relação entre as classes

	Seleção
	Corte mínimo
	Teste de primalidade
	Exercícios

	Complexidade e algoritmos parametrizados
	Material auxiliar
	Algoritmos

	Técnicas para a análise de algoritmos
	Bibliografia
	Índice

