Prova

Questão 1

A solução é observar que o novo fluxo pode aumentar por no máximo um e que podemos tentar encontrar um caminho aumentante no grafo residual. Caso não existe o fluxo já é máximo, caso contrário obtemos o novo fluxo em uma iteração. O grafo residual pode ser construído em tempo O(m+n) e uma busca em largura para encontrar o caminho aumentante também custa somente O(m+n).

Questão 2

Foi esperada uma explicação das operações push (empurrar o excesso atual de um vértice para sucessores de menor altura) e relabel (aumentar a altura de um vértice); uma explicação do algoritmo em geral (inicia com s na altura n, todos restantes na altura 0, repetidamente escolhe um vértice com excesso e aplica push, ou, caso isso não é possível um relabel).

Questão 3

O laco exterior precisa $\mathfrak n$ iterações, a maioria das operações é constante. Importante são as operações no conjunto S de adicionar um elemento e remover o elemento máximo. Um heap binário implementa as duas operações em $O(\log \mathfrak n)$, logo o algoritmo preciso $O(\mathfrak n \log \mathfrak n)$ tempo total incluindo o tempo para ordenar as tarefas pelo prazo. (Soluções com $O(\mathfrak n \log \mathfrak n)$: 2.5pt, com $\mathfrak o(\mathfrak n^2)$: 1.25, com $\mathfrak O(\mathfrak n^2)$: 0.5pt, com $\mathfrak o(\mathfrak n^2)$: 0 pt.

Questão 4

O problema é uma generalização do PCV e para R = V é o PCV. Logo é NP-completa e não possui $\mathfrak{p}(\mathfrak{n})$ -aproximação para qualquer polinômio $\mathfrak{p}(\mathfrak{n})$. Para encontrar uma solução: com forca bruta podemos resolver o PCV para todas 2^{n-r} seleções da cidades adicionais para um tempo total de $O(\mathfrak{n}!2^{n-r})$. Uma modificação simples da programação dinâmica de Bellmann (não visto em aula) consegue resolver o problema em tempo $O(2^r2^{n-r}\mathrm{poly}(\mathfrak{n}))$.

(Caso podemos repetir cidades em $V \setminus R$ podemos substituir as distancias entre cidades em R pela distancia mínima entre eles usando vértices em $V \setminus R$ e reduzir o problema para o PCV.)

Questão 5 As complexidades são

Algoritmo	Complexidade	Comentário
Hopcroft-Karp	\sqrt{n} m	
Algoritmo Húngaro	n^2m	Como visto em aula
Edmonds-Karp	nm^2	
Push-relabel	n^3	Como vista em aula
Dijkstra	$\mathfrak{m}\log\mathfrak{n}$	Com heap binário
Busca em profundidade	m	ou $n + m$

INF05016 – Algoritmos avançados $\frac{2013/2}{\text{Prof. Marcus Ritt}}$

Questão 6

Considerar duas listas consegue balancear as chaves melhor em determinados casos, porem ainda temos, esperadamente α chaves por lista, logo a complexidade da busca continue ser $1+\alpha$, a mesma do hashing com encadeamento. Similarmente a inserção custo O(1). Logo o colega não tem razão: perdemos a busca em O(1) do cuco hashing, uma operação normalmente mais frequente que a inserção. A abordagem se compara com as outras abordagens similar que o hashing com encadeamento.