Henrique Valer
150746

Fernando Coelho
152254
Fundamentos e Paradoxos na teoria dos conjuntos

Fundamentos da matemática:

No século presente, o trabalho com lógica matemática e os fundamentos da matemática estão fortemente conectados. Problemas e idéias sobre os fundamentos da matemática têm contribuído muito para o desenvolvimento da lógica, e a lógica tem sido uma ferramenta primária na investigação desses fundamentos. 

Começaremos com alguns apontamentos sobre a teoria dos conjuntos de Cantor, que datam das descobertas feitas por ele em 1874 a respeito das comparações entre coleções infinitas.


Supomos que gostaríamos de saber se um conjunto possui mais ou menos números que outro. Para conjuntos finitos, podemos calcular esta contagem apenas “comparando” ou “pareando” os elementos dos conjuntos, ou como assumiremos daqui para diante, colocando-os em na correspondência “one-to-one”, ou seja, um a um, (1-1), provando ou não se eles são igualmente numerosos.


Mas como mostraremos no exemplo a seguir, essa comparação entre numerosos grupos é mais primitiva do que as definições de “conjuntos” e “elementos”.


Em uma tribo de aborígines que não conseguem contar além de vinte (20), o líder está para ser escolhido entre dois candidatos, A e B, que receberá a chefia da tribo através do maior número de cabeças de gado que possuir. Os dois candidatos atravessam um portão, cada um levando um animal por vez, até que um dos dois rebanhos tenha acabado. Se o rebanho do candidato a tiver terminado antes do B, B será o líder, e vice-versa. O candidato A ganha se ele possuir animais sobrando quando os de B tiverem se exaurido por completo. Se por acaso, as duas ultimas cabeças de gado, cada uma pertencente a cada chefe, passarem ao mesmo tempo pelo portão, outro método de escolha deverá ser utilizado, ou um segundo líder estabelecido. Como cada candidato tem mais de vinte (20) cabeças de gado, e isso significa que a tribo não é capaz de contar, esse método de pareamento funciona.


Em 1638, Galileu fundamentou o paradoxo que as raízes de inteiros positivos colocados em pareamento 1-1 com todos os inteiros positivos, contraria o axioma Euclidiano
 que diz que: o todo é maior do que qualquer de suas partes, sendo essas partes diferentes do todo.


Porém, com conjuntos infinitos, colocando um conjunto em pareamento 1-1 com uma parte de outro, não exclui a possibilidade que, diante de outro método de pareamento, ambos possam corresponder 1-1.


Com os dois herdeiros isso não poderia acontecer: se B vencer a competição, a certamente tem menos cabeças de gado que ele.


Esse problema assume familiaridade com a seqüência de números naturais (ou inteiros não negativos).



0,
1,
2,
3,
4,
5,
... .


Conjuntos que podem ser relacionados na correspondência 1-1 com os números naturais são chamados Infinitamente contáveis ou infinitamente enumeráveis.

Exemplos desses conjuntos são, além dos próprios números naturais, os positivos inteiros, os positivos inteiros com raiz, os inteiros. Como podemos ver na seguinte enumeração:



1,
2,
3,
4,
5,
6,
...



1,
4,
9,
16,
25,
36,
...



0,
1,
-1,
2,
-2,
3,
...


Seqüências de números que tem relação 1-1 finita podem ser descritas como tendo relação com um segmento 0,...,n-1 da seqüência dos números naturais, até mesmo o segmento vazio (n = 0). O que é equivalente à dizer que um conjunto finito é um conjunto que possui um número cardinal n.


Método da diagonalização de Cantor:

O método da diagonalização de cantor é uma prova para demonstrar que os números reais não são incontáveis num intervalo fechado [0,1]. Esse método não foi a primeira prova usada por Cantor sobre a não contabilidade dos números reais, foi publicada três anos depois de sua primeira tentativa. Seu argumento original não mencionava expansões decimais e nenhum sistema de números.

Desde que sua técnica foi utilizada pela primeira vez, provas similares de construção têm sido usadas em vários segmentos sobre provas. 

A prova original de Cantor mostra que o intervalo [0,1] não é contabilmente infinito. 

A prova por contradição procede assim:

1. Assumimos que o intervalo [0,1] é contabilmente infinito.

2. Deve existir uma sequencia M da forma ( r1, r2, r3, ... ) que enumere todos números desse intervalo.

3. Nós podemos representar todos esses numeros como uma expressão decimal infinita. No caso de números com duas expansões decimais, como 0.499...=0.500..., nós escolhemos a terminada por noves (...,99999).

4. Arranjamos os números em uma lista. Assumimos, por exemplo, que as expansões iniciais da sequencia M são:

r1 = 0 . 5 1 0 5 1 1 0 ... 

r2 = 0 . 4 1 3 2 0 4 3 ...

r3 = 0 . 8 2 4 5 0 2 6 ... 

r4 = 0 . 2 3 3 0 1 2 6 ... 

r5 = 0 . 4 1 0 7 2 4 6 ... 

r6 = 0 . 9 9 3 7 8 3 8 ... 

r7 = 0 . 0 1 0 5 1 3 5 ... 

...

5. Devemos agora construir um número real X contido em [0,1] considerando o k-ésimo dígito após o ponto decimal da expanão rk. Os dígitos considerados estão sublinhados e em negrito, ilustrando a chamada “prova diagonal”.

r1 = 0 . 5 1 0 5 1 1 0 ... 

r2 = 0 . 4 1 3 2 0 4 3 ... 

r3 = 0 . 8 2 4 5 0 2 6 ... 

r4 = 0 . 2 3 3 0 1 2 6 ... 

r5 = 0 . 4 1 0 7 2 4 6 ... 

r6 = 0 . 9 9 3 7 8 3 8 ... 

r7 = 0 . 0 1 0 5 1 3 5 ... 

... 

6. À partir desses dígitos, definimos os dígitos de X À seguir:

· Se o k-ésimo digito de rk  é 5 então o k-ésimo dígito de X é 4.

· Se o k-ésimo digito de rk  não é 5 então o k-ésimo dígito de X é 5. 

7. Sabemos então, que para qualquer possível seqüência M, existe um número X que é claramente reconhecido como real em [0,1].

Para a seqüência acima, temos x = 0 . 4 5 5 5 5 5 4 ... 

8. Portanto devemos ter rn = x para algum n, já que assumimos que ( r1, r2, r3, ... ) enumera todos números reais no intervalo [0,1].

9. Entretanto, por causa da forma que escolhemos quatros e cincos (4 e 5) no passo 6, X difere na n-ésima posição decimal de rn, logo X não está na seqüência ( r1, r2, r3, ... ). 

10. Esta sentença é, contudo, não uma enumeração do conjunto de todos reais no intervalo [0,1]. O que é uma contradição.
11. Portanto, a preposição (1) que o intervalo [0,1] é contabilmente infinita deve ser falsa.

É uma conclusão direta deste resultado que o conjunto R de todos os números reais é incontável. Se R fosse contável, poderíamos enumerar todos os números reais em uma seqüência, e após, conseguir uma seqüência enumerando [0,1] através da remoção de todos os números reais deste intervalo. Mas acabamos de provar que essa enumeração não existe.


Por outro lado, poderíamos mostrar que [0,1] e R tem o mesmo tamanho, através da construção de uma bijeção entre eles. O que é tremendamente ruim de fazer, porém possível, para o intervalo fechado [0,1].

Por que isso não funciona nos inteiros?

A prova não pode ser adaptada para os inteiros para provar que eles também são incontáveis, pois uma seqüência infinita de dígitos diferentes de zero, pode ser criada tirando o ponto decimal de uma expansão decimal de um número real, não representa um inteiro.

Conseqüências:

A Teoria dos Conjuntos de Cantor, apesar de fornecer uma poderosa ferramenta para construir toda a matemática em uma base axiomática, não resistiu muito tempo. O paradoxo de Russell, que consiste em definir o conjunto 
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e depois fazer a pergunta , é a contradição mais famosa da teoria. Por causa desses paradoxos, outras teorias foram propostas.

Outra conseqüência dos estudos de Cantor é a de que existem totalidades que não são equipotentes, podendo um conjunto infinito ser colocado em correspondência com uma de suas partes próprias. O velho axioma do "Todo maior que as partes " foi, assim, banido da matemática, quando se trata de conjuntos infinitos. 
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� Conjuntos infinitos poderem ser relacionados 1-1 foi uma idéia que surgiu muito antes de Euclides, ainda em 412-485 A.D por Proclus.


� Alguns autores usam “números naturais” como sinônimo para “inteiros positivos”.





