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cenciada sob uma Licença Creative Commons (Atribuição–Uso Não-Comercial–
Não a obras derivadas 3.0 Brasil).

iii

http://creativecommons.org/licenses/by-nc-nd/3.0/br




Conteúdo
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3.4. Algoritmos genéticos e meméticos . . . . . . . . . . . . . . . . . 21
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1. Introdução

Um problema de busca é uma relação binária P ⊆ I× S com instâncias x ∈ I
e soluções y ∈ S. O par (x, y) ∈ P caso y é uma solução para x.

Definição 1.1
A classe de complexidade FNP contém os problemas de busca com relações
P polinomialmente limitadas (ver definição 1.3) tal que (x, y) ∈ P pode ser
decidido em tempo polinomial.
A classe de complexidade FP contém os problemas em FNP para quais existe
um algoritmo polinomial A com

A(x) =

{
y para um y tal que (x, y) ∈ P
“insolúvel” caso não existe y tal que (x, y) ∈ P

.

Teorema 1.1
FP=FNP se e somente se P=NP.

Prova. Ver por exemplo Papadimitriou [5, ch. 10.3]. �

Definição 1.2
Um problema de otimização Π = (P, ϕ, opt) é uma relação binária P ⊆ I× S
com instâncias x ∈ I e soluções y ∈ S, junto com

• uma função de otimização (função de objetivo) ϕ : P → N (ou Q).

• um objetivo: Encontrar mı́nimo ou máximo

OPT(x) = opt{ϕ(x, y) | (x, y) ∈ P}

junto com uma solução y∗ tal que f(x, y∗) = OPT(x).

O par (x, y) ∈ P caso y é uma solução para x.

Uma instância x de um problema de otimização possui soluções S(x) = {y |

(x, y) ∈ P}.

Convenção 1.1
Escrevemos um problema de otimização na forma
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1. Introdução

Nome

Instância x

Solução y

Objetivo Minimiza ou maximiza ϕ(x, y).

Com um dado problema de otimização correspondem três problemas:

• Construção: Dado x, encontra a solução ótima y∗ e seu valor OPT(x).

• Avaliação: Dado x, encontra valor ótimo OPT(x).

• Decisão: Dado x e k, decide se OPT(x) ≥ k (maximização) ou OPT(x) ≤
k (minimização).

Definição 1.3
Uma relação binária R é polinomialmente limitada se

∃p ∈ poly : ∀(x, y) ∈ R : |y| ≤ p(|x|).

Definição 1.4 (Classes de complexidade)
A classe PO consiste dos problemas de otimização tal que existe um algoritmo
polinomial A com ϕ(x,A(x)) = OPT(x) para x ∈ I.
A classe NPO consiste dos problemas de otimização tal que

(i) As instâncias x ∈ I são reconhećıveis em tempo polinomial.

(ii) A relação P é polinomialmente limitada.

(iii) Para y arbitrário, polinomialmente limitado: (x, y) ∈ P é decid́ıvel em
tempo polinomial.

(iv) ϕ é computável em tempo polinomial.

1.1. Não tem almoço de graça

“Sire in eight words I will reveal to you all the wisdom that I
have distilled through all these years from all the writings of all
the economists who once practiced their science in your kingdom.
Here is my text: ‘There ain’t no such thing as free lunch’ ” [9]
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1.2. Representação de soluções

A frase “there ain’t no such thing as free lunch” (TANSTAFEL) expressa que
uma vantagem (p.ex. o almoço de graça em bares dos EUA no século 19)
tipicamente é pago de outra forma (p.ex. comida salgada e bebidas caras).
Para problemas de busca e de otimização, Wolpert e Macready [10] provaram
teoremas que mostram que uma busca universal não pode ter uma vantagem
em todos problemas de otimização.
Para um problema de otimização supõe que ϕ : P → Φ é restrito para um
conjunto finito Φ, e seja F = ΦS(x) espaço de todas funções objetivos para
uma instância do problema. Um algoritmo de otimização avalia pares de
soluções com o seu valor (s, v) ∈ S(x) × Φ. Seja D = ∪m≥0(S(x) × Φ)m o
conjunto de todas sequencias de pares. Um algoritmo de otimização que não
repete avaliações pode ser modelado como uma função a : d ∈ D → {s | s 6=
si, para di = (si, vi), i ∈ [|d|]}. A avaliação de um algoritmo de otimização é
através uma função Φ(d). Ela pode, por exemplo, atribuir a d o valor mı́nimo
encontrado durante a busca.

Teorema 1.2 (Wolpert e Macready [10])
Para algoritmos a, a ′, um número de passos m e uma sequencia de valores
v ∈ Φm ∑

f∈F

P[v | f,m, a] =
∑
f∈F

P[v | f,m, a ′].

O teorema mostra que uma busca genérica não vai ser melhor que uma busca
aleatória em média sobre todas funções objetivos . Porém, uma grande fração
das funções posśıveis não ocorrem na prática (uma função aleatória é incom-
presśıvel, i.e. podemos especificá-la somente por tabulação). Além disso, al-
goritmos de busca frequentemente aproveitam a estrutura do problema em
questão.

1.2. Representação de soluções

A representação de soluções influencia as operações aplicáveis e a sua com-
plexidade. Por isso a escolha de uma representação é importante para o de-
sempenho de uma heuŕıstica. A representação também define o tamanho do
espaço de busca, e uma representação compacta (e.g. 8 coordenadas versus
permutações no problema das 8-rainhas) é prefeŕıvel. Para problemas restri-
tas uma representação impĺıcita que é transformado para uma representação
direta por um algoritmo pode ser vantajoso.
Para uma discussão abstrata usaremos frequentemente duas representações
elementares. Na representação por conjuntos uma solução é um conjunto
S ⊆ U de um universo U. Os conjuntos válidos são dados por uma coleção
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1. Introdução

V de subconjuntos de U. Na representação por variáveis uma instância é um
subconjunto I ⊆ U, e uma solução é uma atribuição de valores de um universo
V aos elementos em I.

Exemplo 1.1 (Representação do PCV)
Uma representação por conjuntos para o PCV sobre um grafo G = (V,A) é
o universo de arestas U = A, com V todos subconjuntos que formam ciclos.
Um exemplo de uma representação por variáveis é U = V = N com instâncias
I = [n] para n cidades. Uma atribuição válida define a posição de i ∈ I na
rota. ♦

1.2.1. Transformações entre representações

Um transformador recebe uma representação de uma solução e transforma
ela numa representação diferente. Um algoritmo construtivo randomizado
(ver caṕıtulo 4) pode ser visto como um algoritmo que transforma uma se-
quencia de números aleatórios em uma solução explicita. Ambas são repre-
sentações válidas da mesma solução. Essa ideia é aplicada também em algorit-
mos genéticos, onde a representação fonte se chama fenótipo e a representação
destino genótipo. A ideia de representar uma solução por uma sequencia de
números aleatórios é usado diretamente em algoritmo genéticos com chaves
aleatórias (ver 3.4.1).
Uma transformação é tipicamente sobrejetiva (“many-to-one”), i.e. existem
várias representações fonte para uma representação destino. Idealmente, existe
o mesmo número de representações fontes para representações destino, para
manter a mesma distribuição de soluções nos dois espaços.

Exemplo 1.2 (Representação de permutações por chaves aleatórias)
Uma permutação de n elementos pode ser representado por n números aleatórios
reais em [0, 1]. Para números aleatórios são a1, . . . , an, seja π uma permutação
tal que aπ(1) ≤ · · ·aπ(n). Logo os números ai representam a permutação π

(ou π−1). ♦

Uma transformação pode ser é útil caso o problema possui muitas restrições
e o espaço de busca definido por uma representação direta contém muitas
soluções inválidas.

Exemplo 1.3 (Coloração de vértices)
Uma representação direta da coloração de vértices pode ser uma atribuição
de cores a vértices. Para um limite de no máximo n cores, temos nn posśıveis
atribuições, mas várias são infact́ıveis. Uma representação indireta é uma
permutação de vértices. Para uma dada permutação um algoritmo guloso
processo os vértices em ordem e atribui o menor cor livre ao vértice atual. A
corretude dessa abordagem mostra
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1.2. Representação de soluções

Lema 1.1
Para uma dada k-coloração, sejam C1∪· · ·∪Ck as classes de cores. Ordenando
os vértices por classes de cores, o algoritmo guloso produz uma coloração com
no máximo k cores.

Prova. Mostraremos por indução que a coloração das primeiras i classes não
precisa mais que i cores. Para a primeira classe isso é obviou. Supõe que na
coloração da classe i precisamos usar a cor i+ 1. Logo existe um vizinho com
cor i. Mas pelo hipótese da indução o vizinho não pode ser de uma classe
menor. Logo, temos uma aresta entre dois vértices da mesma classe, uma
contradição. �
Com essa representação, todas soluções são válidas. Observe que o tamanho
do espaço da busca n! ≈

√
2πn(n/e)n (por A.5) é similar nas duas repre-

sentações. ♦

Por fim, transformações podem ser úteis caso podemos resolver subproblemas
restritas do problema eficientemente.

Exemplo 1.4 (Sequenciamento em máquinas paralelas não relacionadas)
Uma solução para R ||

∑
wjCj direta é uma atribuição das tarefas às máquinas,

junto com a ordem das tarefas em cada máquina.

Teorema 1.3
A solução ótima de 1 ||

∑
wjCj é uma sequencia em ordem de tempo de

processamento ponderado não-decrescente p1/w1 ≤ · · · ≤ pnwn.

Prova. Supõe uma sequencia ótima com pi/wi > pi+1/wi+1. A contribuição
das duas tarefas à função objetivo é w = wiCi+wi+1Ci+1. Trocando as duas
tarefas a contribuição das restantes tarefas não muda, e a contribuição das
duas tarefas é

wi+1(Ci+1 − pi) +wi(Ci + pi+1) = w+wipi+1 −wi+1pi.

Logo a função objetivo muda por ∆ = wipi+1 − wi+1pi, mas pelo hipótese
∆ < 0. �
Logo a ordem ótima de uma máquina pode ser computada em tempoO(n logn),
e uma representação reduzida mantém somente a distribuição das tarefas à
máquinas. ♦

As diferentes representações compactas podem ser combinadas.

Exemplo 1.5 (Simple assembly line balancing)
No “simple assembly line balacing problem” do tipo 2 temos que atribuir n
tarefas, restritas por precedências, à m de estações de trabalho. Cada tarefa
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1. Introdução

possui um tempo de execução ti, e o tempo de estação é o tempo total das
tarefas atribúıdas a uma estação. O objetivo é minimizar o maior tempo de
estação.

Uma representação direta é uma atribuição de tarefas a estações, mas muitas
atribuições são inválidas por não satisfazer as precedências entre as tarefas.
Uma representação mais compacta atribui chaves aleatórias às tarefas. Com
isso, uma ordem global das tarefas é definido: elas são ordenados topologi-
camente, usando as chaves aleatórias como critério de desempate, caso duas
tarefas concorram para a próxima posição. Por fim, para uma dada ordem
de tarefas, a solução ótima do problema pode ser obtida via programação
dinâmica. Seja C(i, k) o menor tempo de ciclo para tarefas i, . . . , n em k
máquinas, a solução ótima é C(1,m) e C satisfaz

C(i, k) =


mini≤j≤nmax{

∑
i≤j ′≤j tj ′ , C(j+ 1, k+ 1)} para i ≤ n, k > 0

0 para i > n∞ para i ≤ n e k = 0

,

e logo a solução ótima pode ser obtida em tempo e espaço O(nm) (pré-
calculando as somas parciais). ♦

Essa observação é o motivo para o

Prinćıpio de projeto 1.1 (Subproblemas)
Identifica os subproblemas mais dif́ıceis que podem ser resolvidos em tempo
polinomial é considera uma representação que contém somente a informação
necessário para definir os subproblemas.

1.3. Estratégia de busca: Diversificação e intensificação

No projeto de uma heuŕıstica temos que balancear dois objetivos antagonis-
tas: a diversificação da busca e a intensificação de busca. A diversificação da
busca (também chamada exploration) procura garantir uma boa cobertura do
espaço de busca, evitando que a soluções analisadas ficam confinado a uma
região pequena do espaço total. A diversificação ideal é uma algoritmo que re-
petidamente gera soluções aleatórias. Em contraste a intensificação (também
chamada exploitation) procura melhor a solução atual o mais posśıvel. Um
exemplo de uma intensificação seria analisar todas soluções dentro uma certa
distância da solução atual.
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1.4. Notas

1.4. Notas

Mais informações sobre os teoremas NFL se encontram no artigo original de
Wolpert e Macready [10] e em Burke e Kendall [2, ch. 11] e Rothlauf [6,
ch.3.4.4].
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2. Busca por modificação de soluções

Uma busca local procura melhorar uma solução de uma instância de um pro-
blema aplicando uma pequena modificação, chamada movimento. O conjunto
de soluções que resultam de uma pequena modificação formam os vizinhos da
solução.

Definição 2.1
Uma vizinhança de uma instância x de um problema de otimização Π é uma

função N : S(x) → 2S(x). Para uma solução s, os elementos N(s) são os
vizinhos de s. Os vizinhos melhores de s são B(s) = {s ′ ∈ N(s) | ϕ(s ′) < ϕ(s)}.
Uma vizinhança é simétrica, caso para s ′ ∈ N(s) temos s ∈ N(s ′).
Para uma dada vizinhança um mı́nimo local é uma solução s, tal que ϕ(s) ≤
ϕ(s ′) para s ′ ∈ N(s) e um máximo local caso ϕ(s) ≥ ϕ(s ′) para s ′ ∈ N(s).
Caso uma solução é estritamente menor ou maior que os seus vizinhos, o ótimo
local é estrito. Uma vizinhança é exata, caso cada ótimo local também é um
ótimo global.

Definição 2.2
O grafo de vizinhança G = (V, E) para uma instância x de um problema de
otimização Π com vizinhança N possui vértices V = {y | (x, y) ∈ P} e arcos
(s, s ′) para s, s ′ ∈ S(x), s ′ ∈ N(s). Para uma vizinhança simétrica, o grafo
de vizinhança é efetivamente não-direcionado. Uma solução s ′ é alcançável a
partir da solução s, caso existe um caminho de s para s ′ no grafo de vizinhança.
O grafo G é fracamente otimamente conectada caso a partir de cada solução
s uma solução ótima é alcançável.

Uma vizinhança é suficiente para definir uma busca local genérica. Ela seleci-
ona um vizinho de acordo com uma distribuição P̂s sobre a vizinhança fechada
N̂(s) = {s} ∪ N(s). Para uma distribuição Ps sobre N(s), a extensão padrão
para a vizinhança fechada é definido por

P̂s(s
′) =

{
1−
∑
s ′∈N(s) Ps(s

′) para s ′ = s

Ps(s
′) caso contrário

Algoritmo 2.1 (LocalSearch)
Entrada Solução inicial s, vizinhança N, distribuição Ps.

11



2. Busca por modificação de soluções

Sáıda Uma solução com valor no máximo f(s).

1 LocalSearch (s)=
2 s∗ := s
3 repeat

4 s e l e c i o n a s ′ ∈ N̂(s) de acordo com P̂s
5 s := s ′

6 s∗ = min{s∗, s}
7 until c r i t é r i o de parada s a t i s f e i t o
8 return s∗

9 end

A complexidade de uma busca local depende da complexidade da seleção e do
número de iterações. A complexidade da seleção muitas vezes é proporcional
ao tamanho da vizinhança |N(s)|.
Duas estratégias básicas para uma busca local são

Caminhada aleatória (ingl. random walk) Para N(s) 6= ∅, define Ps(s) =
1/|N(s)|.

Amostragem aleatória (ingl. random picking) Uma caminhada aleatória com
N(s) = S(x) para todo s ∈ S(x).

Exemplo 2.1 (Politopos e o método Simplex)
O método Simplex define uma vizinhança entre os vértices do politopo de um
programa linear: cada par variável entrante é variável sainte admisśıvel define
um vizinho. Essa vizinhança é simétrica, conectada, fracamente otimamente
conectada e exata. Logo o método resolve o problema da programação linear.

♦

Exemplo 2.2 (k-exchange para o PCV)
Uma vizinhança para o PCV é k-exchange Croes [3]: os vizinhos de um ciclo
são obtidos removendo k arcos, e conectando os k caminhos resultantes de
outra forma. Para qualquer k fixo, essa vizinhança é simétrica, conectada,
fracamente otimamente conectada, mas inexata (por quê?). O tamanho da
vizinhança é O(nk) para n cidades.

3-exchange
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2.1. Busca locais monótonas

♦

Exemplo 2.3 (k-SAT)
O problema k-SAT é decidir se existe uma atribuição x ∈ {0, 1}n que satisfaz
uma fórmula ϕ(x) da lógica proposicional em forma normal conjuntivo com k
literais por cláusula.
Seja |x− y|1 =

∑
i∈[n][xi 6= yi] a distância Hamming entre dois vetores x, y ∈

{0, 1}n. Uma vizinhança conhecida para SAT é k-flip: os vizinhos de uma
solução são todas soluções de distância Hamming k. A vizinhança é simétrica,
fracamente otimamente conectada para k = 1, mas inexata. O tamanho da
vizinhança é O(nk).

♦

2.1. Busca locais monótonas

Uma busca local monótona permite somente modificações que melhoram a
solução atual, i.e. no algoritmo LocalSearch sempre temos Ps(s

′) = 0 para s ′ 6∈
B(s) . Logo, o algoritmo termina num ótimo local. Pela monotonia também
não é necessário guardar a melhor solução encontrada. A busca depende da
estratégia de seleção da nova solução s ′, também conhecido como regra de
pivoteamento.

Algoritmo 2.2 (LocalDescent)
Entrada Solução inicial s, vizinhança N, distribuição Ps.

Sáıda Uma solução com valor no máximo f(s).

1 LocalDescent (s):=
2 repeat

3 s e l e c i o n a s ′ ∈ N̂(s) de acordo com P̂s
4 s := s ′

5 until s ′ = s
6 return s
7 end

Descida aleatória (ingl. random descent) Para B(s) 6= ∅ define Ps(s
′) =

1/|B(s)| para s ′ ∈ B(s). Esta estratégia é equivalente com a primeira
melhora, mas em ordem aleatória.

Primeira melhora (ingl. first improvement) A primeira melhora supõe uma
vizinhança ordenada B(s) = {b1, . . . , bk}. Ela seleciona f = min{i |

13



2. Busca por modificação de soluções

f(bi) < f(s)}, i.e. Ps(bi) = [i = f]. O método é conhecido pelos nomes
“hill climbing” (no caso de maximização) ou “hill descent” (no caso de
minimização).

Melhor melhora (ingl. best improvement) Para B(s) 6= ∅, define B∗(s) =
{s ′ ∈ B(s) | f(s ′) = mins ′′∈B(s) f(s

′′) e Ps(s
′) = 1/|B∗(s)| para s ′ ∈

B∗(s). O método é conhecido pelos nomes “steepest ascent” (no caso de
maximização) ou “steepest descent” (no caso de minimização).

Busca por amostragem (ingl. sample search) Seleciona um subconjunto S ⊆
N(x) aleatório de tamanho α|N(x)|, define B∗(s) = {s ′ ∈ B(s) | f(s ′) =
mins ′′∈S f(s

′′) e Ps(s
′) = 1/|B∗(s)| para s ′ ∈ B∗(s).

As estratégias obviamente podem ser combinadas, por exemplo, aplicar uma
estratégia de “primeira melhora” após uma amostragem.
A qualidade de uma busca local depende da vizinhança: para vizinhanças
maiores esperamos encontrar ótimos locais melhores. Porém a complexidade
da busca cresce com a vizinhança. A arte, porém, consiste em balancear estes
dois objetivos.

Exemplo 2.4 (Método Simplex)
Não conhecemos regras de pivoteamento para o método Simplex que garantem
uma complexidade polinomial. Porém, a programação linear possui soluções
polinomiais (que não usam busca local). Por isso, a complexidade de encontrar
ótimos locais pode ser menor que a complexidade do método iterativo. ♦

Exemplo 2.5 (OneMax)
Para um x∗ ∈ {0, 1}n fixo o problema OneMax consiste encontrar o mı́nimo de
f(x) = |x−x∗|1, i.e. x∗. O número de bits X corretos de uma solução aleatória
satisfaz E[X] = n/2 e Pr[X ≤ n/3] ≤ e−n/36 e Pr[X ≥ 2n/3] ≤ e−n/54

(aplicando limites de Chernoff (A.4)).
Uma descida aleatória precisa tempo O(n) para selecionar um vizinho, ava-
liando a função objetivo em O(1), e O(n) passos, para um tempo total de
O(n2). Uma analisa mais detalhada é o seguinte: para selecionar um vi-
zinho melhor, podemos repetidamente selecionar um vizinho arbitrário, até
encontrar um vizinho melhor. Com i bits diferentes, encontramos um vizinho
melhor com probabilidade i/n. Logo a seleção precisa esperadamente n/i
passos até encontrar um vizinho melhor (ver lema A.2) e logo no máximo∑

1≤i≤n

n/i = nHn ≈ n logn

passos até encontrar x∗.

14
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A primeira melhora precisa no pior caso (todos bits diferentes) tempo esperado
Θ(n/w) para encontrar um vizinho melhor, e a melhor melhora tempo Θ(n).
Logo, ambas precisam tempo Θ(n2) para encontrar x∗. ♦

Exemplo 2.6 (GSAT)
O algoritmo GSAT [8] aplica a estratégia “melhor melhora” na vizinhança
1-flip com função objetivo sendo o número de cláusulas satisfeitas. Ele perio-
dicamente recomeça a busca numa solução aleatória. ♦

Exemplo 2.7 (WalkSAT)
WalkSAT usa uma estratégia de seleção mais sofisticada: em cada passo uma
cláusula não satisfeita é selecionada, e uma variável aleatória dessa cláusula
é invertida. (O WalkSAT proposto por Selman, Kautz e Cohen [7] seleciona
uma variável que não invalida nenhuma outra cláusula ou com probabilidade
p uma que invalide o menor número e com probabilidade 1−p uma aleatória.)
Logo a vizinhança é um subconjunto da vizinhança 1-flip. WalkSAT também
recomeça a busca a partir de uma solução aleatória periodicamente.

Lema 2.1
Seja ϕ uma fórmula em k-CNF satisfat́ıvel com n variáveis. O algoritmo

WalkSAT precisa esperadamente O(n3/2(2(k − 1)/k)n) passos até encontrar
uma atribuição que satisfaz ϕ.

Prova. Seja a uma atribuição que satisfaz ϕ. Vamos determinar a proba-
bilidade q que um peŕıodo de WalkSAT encontra a. Com pj =

(
n
j

)
2−n a

probabilidade de iniciar com distância Hamming j de a, e qj a probabilidade
de encontrar a a partir da distância j, temos

q =
∑
0≤j≤n

pjqj. (*)

A distância Hamming para a diminui com probabilidade pelo menos 1/k e
aumento com probabilidade no máximo 1−1/k. Podemos modelar o WalkSAT
como caminhada aleatória entre classes de soluções com distância Hamming
j, com uma probabilidade de transição de j para j − 1 (“para baixo”) de 1/k
e de j para j + 1 (“para acima”) de 1 − 1/k. Com isso qj é pelo menos a
probabilidade de chegar na classe 0 a partir da classe j em no máximo 3n
passos. Para isso podemos fazer j passos para baixo, ou j+ 1 para baixo e um
para acima, e no geral j+ l para baixo e l para acima. Logo

qj ≥ max
0≤l≤(3n−j)/2

(
j+ 2l

l

)(
k− 1

k

)l(
1

k

)j+l
.
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2. Busca por modificação de soluções

Para l = αj com α ∈ (0, 1/2) temos

qj ≥
(
(1+ 2α)j

αj

)((
k− 1

k

)α(
1

k

)(1+α)
)j
.

Aplicando o lema A.1 é posśıvel estimar(
(1+ 2α)j

αj

)
≥ (8j)−1/2

((
1+ 2α

α

)α(
1+ 2α

1+ α

)1+α)j
e logo

qj ≥ (8j)−1/2

((
1+ 2α

α

)α(
1+ 2α

1+ α

)1+α(
k− 1

k

)α(
1

k

)(1+α)
)j
.

Escolhendo α = 1/(k− 2) e simplificando obtemos

qj ≥ (8j)−1/2
(

1

k− 1

)j
.

Finalmente, substituindo em (*)

q ≥ 2−n +
∑
j∈[n]

(
n

j

)
2−n(8j)−1/2

(
1

k− 1

)j

2−n(8n)−1/2
∑
j∈[n]

(
n

j

)(
1

k− 1

)j
1n−j

= 2−n(8n)−1/2
(
1+

1

k− 1

)n
=

1√
8n

(
k

2(k− 1)

)n
Logo, o número esperado de peŕıodos é

1/q =
√
8n

(
2(k− 1)

k

)n
e como cada peŕıodo precisa tempo O(n) o resultado segue. �
Para uma fórmula satisfat́ıvel com k = 3, por exemplo, o algoritmo precisa
O(n3/2(4/3)n) passos.
É posśıvel transformar esta algoritmo num algoritmo randomizado que decide
se uma fórmula é satisfat́ıvel com alta probabilidade. ♦
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2.1. Busca locais monótonas

Exemplo 2.8 (2-opt para o PCV)
A estratégia 2-opt para o PCV é uma descida aleatória na vizinhança 2-
exchange. Similarmente, obtemos k-opt na vizinhança k-exchange.

Teorema 2.1
Para k ≥ 2, n ≥ 2k + 8 e para α > 1/n existe uma instância x do PCV com
n cidades, tal que

k-opt(x)

OPT(x)
> α.

Prova. Para um k par, define distâncias

d12 = 1

di,i+1 = dn,1 = 1/nα i ∈ [2, n)

dk+3,2k+4 = 1/nα

dj,2k+4−j = 1/nα j ∈ [k]

di,j = kn caso contrário

Um ciclo Hamiltoniano ótimo é dado por arestas (i, próximo(i)) com

próximo(i) =



2k+ 4− i para i impar e i < k

i+ 1 para i par e i < k

i+ 1 para i ∈ [k, k+ 2]

2k+ 4 para i = k+ 3

i− 1 para i impar e i ∈ [k+ 3, 2k+ 4)

2k+ 4− i para i par e i ∈ [k+ 3, 2k+ 4)

i+ 1 para i ∈ [2k+ 4, n]

1 para i = n

A otimalidade segue do fato que todas arestas possuem o peso mı́nimo 1/nα.
Este ciclo é único ciclo ótimo (Exerćıcio!). Por outro lado, o ciclo (1, 2, . . . , n)
possui peso total 1+ (n− 1)/nα, mas tem k+ 1 arestas diferentes. Logo este
ciclo é um mı́nimo local para k-exchange e para a instância acima temos

k-opt(x)

OPT(x)
= α+ 1− 1/n > α.

Para provar o caso para um k impar, podemos observar que um mı́nimo local
para o k+ 1-exchange, também é um mı́nimo local para k-exchange. �

♦
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Figura 2.1.: Caminhos constrúıdos na prova do teorema 2.1. Esquerda: n =
22, k = 8. Meio: n = 12, k = 2. Direita: n = 40, k = 16.

2.1.1. Segue os vencedores

Segue os vencedores (ingl. go with the winners) [1] é uma estratégia que tra-
balho com múltiplas soluções. Caso solução percorre uma trajetória de uma
busca local monótona. Caso uma das trajetórias termina num mı́nimo local,
ela continua no ponto atual de uma das outras trajetórias que ainda não che-
garam num mı́nimo local. A busca termina, caso todas trajetórias terminaram
num mı́nimo local.

Algoritmo 2.3 (Segue os vencedores)
Entrada Solução inicial s, vizinhança N, distribuição Ps, o número de

soluções k.

Sáıda Uma solução com valor no máximo f(s).

1 SV(s)=
2 si := s para i ∈ [k]
3 s∗ = s
4 repeat
5 s e j a L := {i ∈ [k] | B(s) = ∅}
6 a t r i b u i às s o l u ç õ e s em L
7 uniformemente s o l u ç õ e s em [k] \ L

8 s e l e c i o n a s ′i ∈ N̂(si) de acordo com P̂si
9 si := s

′
i

10 s∗ = min{s∗, s1, . . . , sk}
11 until L = [k]
12 return s∗

13 end

Uma variante [4] distribui as soluções de acordo com o número de vizinhos
melhores.
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2.2. Buscas locais não-monótonas

2.2. Buscas locais não-monótonas

Uma busca local não-monótona permite piorar a solução atual.

Algoritmo 2.4 (S-LocalSearch)
Entrada Solução inicial s0.

Sáıda Solução s tal que f(s) ≤ f(s).

1 S−LocalSearch (s)=
2 repeat
3 s∗ := s
4 s e l e c i o n a S ⊆ N(s)
5 s ′ = argmins{f(s) | s ∈ S}
6 i f f(s ′) < f(s)∨ acceptable(s ′) then
7 s := s ′

8 s∗ := min{s∗, s}
9 e n d i f

10 until c r i t é r i o de parada s a t i s f e i t o
11 return s∗

12 end
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6.1. Escolha de parâmetros
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6.2.1. Teste de hipóteses
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A. Conceitos matemáticos

Definição A.1
Uma função f é convexa se ela satisfaz a desigualdade de Jensen

f(Θx+ (1−Θ)y) ≤ Θf(x) + (1−Θ)f(y). (A.1)

Similarmente uma função f é concava caso −f é convexo, i.e., ela satisfaz

f(Θx+ (1−Θ)y) ≥ Θf(x) + (1−Θ)f(y). (A.2)

Exemplo A.1
Exemplos de funções convexas são x2k, 1/x. Exemplos de funções concavas
são log x,

√
x. ♦

Proposição A.1
Para

∑
i∈[n]Θi = 1 e pontos xi, i ∈ [n] uma função convexa satisfaz

f
(∑
i∈[n]

Θixi
)
≤
∑
i∈[n]

Θif(xi) (A.3)

e uma função concava

f
(∑
i∈[n]

Θixi
)
≥
∑
i∈[n]

Θif(xi) (A.4)

Prova. Provaremos somente o caso convexo por indução, o caso concavo
sendo similar. Para n = 1 a desigualdade é trivial, para n = 2 ela é válida
por definição. Para n > 2 define Θ̄ =

∑
i∈[2,n]Θi tal que Θ + Θ̄ = 1. Com

isso temos

f
(∑
i∈[n]

Θixi
)
= f
(
Θ1x1 +

∑
i∈[2,n]

Θixi
)
= f(Θ1x1 + Θ̄y)
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onde y =
∑
j∈[2,n](Θj/Θ̄)xj, logo

f
(∑
i∈[n]

Θixi
)
≤ Θ1f(x1) + Θ̄f(y)

= Θ1f(x1) + Θ̄f
( ∑
j∈[2,n]

(Θj/Θ̄)xj
)

≤ Θ1f(x1) + Θ̄
∑
j∈[2,n]

(Θj/Θ̄)f(xj) =
∑
i∈[n]

Θixi

�

Definição A.2
O fatorial é a função

n! : N→ N : n 7→ ∏
1≤i≤n

i.

Temos a seguinte aproximação do fatorial (fórmula de Stirling)

n! =
√
2πn

(n
e

)n
(1+O(1/n)) (A.5)

Uma estimativa menos preciso pode ser obtido estimando

en =
∑
i≥0

ni

i!
>
nn

n!

que implica

(n/e)n ≤ n! ≤ nn.

Definição A.3 (Entropia binária)
A entropia binária para α ∈ (0, 1) é h(α) = −α log2 α− (1− α) log2 1− α.

Lema A.1
Para α ∈ (0, 1/2]

(8nα(1− α))−1/2 2h(α)n ≤
∑

1≤i≤nα

(
n

i

)
≤ 2h(α)n.
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Prova. Para a segunda desigualdade temos

1 = (α+ (1− α))n =
∑
1≤i≤n

(
n

i

)
αi(1− α)n−i

≥
∑

1≤i≤nα

(
n

i

)(
α

1− α

)i
(1− α)n

≥
∑

1≤i≤nα

(
n

i

)(
α

1− α

)nα
(1− α)n

= αnα(1− α)(1−α)n
∑

1≤i≤nα

(
n

i

)

= 2−nh(α)
∑

1≤i≤nα

(
n

i

)
.

O terceiro passo é valido porque para α ∈ (0, 1/2] temos α/(1 − α) ≤ 1 e
i ≤ nα. �
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A.1. Probabilidade discreta

Probabilidade: Noções básicas

• Espaço amostral finito Ω de eventos elementares e ∈ Ω.

• Distribuição de probabilidade Pr[e] tal que

Pr[e] ≥ 0;
∑
e∈Ω

Pr[e] = 1

• Eventos (compostos) E ⊆ Ω com probabilidade

Pr[E] =
∑
e∈E

Pr[e]

Exemplo A.2
Para um dado sem bias temos Ω = {1, 2, 3, 4, 5, 6} e Pr[i] = 1/6. O evento
Par = {2, 4, 6} tem probabilidade Pr[Par] =

∑
e∈Par Pr[e] = 1/2. ♦

Probabilidade: Noções básicas

• Variável aleatória

X : Ω→ N

• Escrevemos Pr[X = i] para Pr[X−1(i)].

• Variáveis aleatórias independentes

P[X = x e Y = y] = P[X = x]P[Y = y]

• Valor esperado

E[X] =
∑
e∈Ω

Pr[e]X(e) =
∑
i≥0

iPr[X = i]

• Linearidade do valor esperado: Para variáveis aleatórias X, Y

E[X+ Y] = E[X] + E[Y]
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A.1. Probabilidade discreta

Prova. (Das formulas equivalentes para o valor esperado.)∑
0≤i

Pr[X = i]i =
∑
0≤i

Pr[X−1(i)]i

=
∑
0≤i

∑
e∈X−1(i)

Pr[e]X(e) =
∑
e∈Ω

Pr[e]X(e)

�
Prova. (Da linearidade.)

E[X+ Y] =
∑
e∈Ω

Pr[e](X(e) + Y(e))

=
∑
e∈Ω

Pr[e]X(e)
∑
e∈Ω

Pr[e]Y(e)) = E[X] + E[Y]

�
Exemplo A.3
(Continuando exemplo A.2.)
Seja X a variável aleatório que denota o número sorteado, e Y a variável
aleatório tal que Y = [a face em cima do dado tem um ponto no meio].

E[X] =
∑
i≥0

Pr[X = i]i = 1/6
∑
1≤i≤6

i = 21/6 = 7/2

E[Y] =
∑
i≥0

Pr[Y = i]i = Pr[Y = 1] = 1/2E[X+ Y] = E[X] + E[Y] = 4

♦

Lema A.2
Para tentativas repetidas com probabilidade de sucesso p, o número esperado
de passos para o primeiro sucesso é 1/p.

Prova. Seja X o número de passos até o primeiro sucesso. Temos P[X = k] =
(1− p)k−1p e logo

E[X] =
∑
k≥1

kP[X = k] =
∑
k≥1

k(1− p)k−1p

= p

∑
k≥1

k(1− p)k +
∑
k≥0

(1− p)k


= p

(
(1− p)/p2 + 1/p

)
= 1/p.

�
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Proposição A.2
Para ϕ convexo ϕ(E[X]) ≤ E[ϕ(X)] e para ϕ concavo ϕ(E[X]) ≥ E[ϕ(X)].

Prova. Pela proposição A.1. �

Proposição A.3 (Desigualdade de Markov)
Seja X uma variável aleatória com valores não-negativas. Então, para todo
a > 0

Pr[X ≥ a] ≤ E[X]/a.

Prova. Seja I = [X ≥ a]. Como X ≥ 0 temos I ≤ X/a. O valor esperado de I
é E[I] = Pr[I = 1] = Pr[X ≥ a], logo

Pr[X ≥ a] = E[I] = E[X/a] = E[X]/a.

�
Proposição A.4 (Limites de Chernoff (ingl. Chernoff bounds))
Sejam X1, . . . , Xn indicadores independentes com Pr[Xi] = pi. Para X =∑
i Xi temos para todo δ > 0

Pr[X ≥ (1+ δ)µ] ≤
(

eδ

(1+ δ)(1+δ)

)µ
para todo δ ∈ (0, 1)

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ
para todo δ ∈ (0, 1]

Pr[X ≥ (1+ δ)µ] ≤ e−µδ
2/3

e para todo δ ∈ (0, 1)

Pr[X ≤ (1− δ)µ] ≤ e−µδ
2/2.

Exemplo A.4
Sejam X1, . . . , Xk indicadores com Pr[Xi = 1] = pi e X =

∑
i Xi. Temos

µ = E[X] =
∑
i E[Xi] = αk. Qual a probabilidade de ter menos que a metade

dos Xi = 1?

Pr[X ≤ bk/2c] ≤ Pr[X ≤ k/2] = Pr[X ≤ µ/2α] =

Pr[X ≤ µ(1− (1− 1/2α))] ≤ e−µδ
2/2 = e−k/2α(α−1/2)

2

.

♦
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