A7

Busca heuristica

Metaheuristics

J/i’npuhtim

Evolutionary
algorithm

Naturally inspired

yoJeas |edo

Y

Dynamic objective function
Fonte: Wikipedia

Notas de aula

Marcus Ritt
mrpritt@inf.ufrgs.br

13 de Margo de 2013

Universidade Federal do Rio Grande do Sul
Instituto de Informética
Departamento de Informatica Teorica

mrpritt@inf.ufrgs.br

Versao 4487 do 2013-03-13, compilada em 13 de Marco de 2013. Obra esta li-
cenciada sob uma Licenga Creative Commons (Atribuigao—Uso Nao-Comercial—
Nao a obras derivadas 3.0 Brasil).

iii

http://creativecommons.org/licenses/by-nc-nd/3.0/br

Conteudo

1.

Introducao

1.1.
1.2

1.3.
1.4.

Nao tem almoco de graga
Representacao de solugdes

1.2.1. Transformacoes entre representacoes
Estratégia de busca: Diversificagao e intensificagao

Notas

Busca por modificacao de solucoes

2.1.

2.2.

2.3.

Busca locais mondtonas
2.1.1. Segue os vencedores
Buscas locais nao-mondtonas
2.2.1. Buscatabu

2.2.2. Algoritmo Metropolis e Temperada simulada

2.2.3. Aceitagao por limite
2.2.4. Grande Diluvio
2.2.5. Aceitagdo atrasada
2.2.6. Otimizagao extremal
2.2.7. Busca local guiada
2.2.8. Stochastic hill climbing
Buscas locais avancadas
2.3.1. Busca local iterada

2.3.2. Busca local com vizinhanca variavel
2.3.3. Busca local em vizinhangas grandes

Busca por recombinacao de solucoes

3.1.
3.2.
3.3.
3.4.

3.5.

Religamento de caminhos
Scatter search
Probe
Algoritmos genéticos e meméticos . . .

3.4.1. Algoritmos genéticos com chaves aleatérias

GRASP com religamento de caminhos

Busca por construcao de solucoes

4.1.

Construcao simples
4.1.1. Algoritmos (semi-)gulosos . . .

11
13
18
19
20
20
20
20
20
20
20
20
20
20
20
20

21
21
21
21
21
21
21

23
23
23

Contetido

4.1.2. Algoritmos de prioridade
4.1.3. Buscaporraio
4.2. Construgao repetida independente
4.21. GRASP
4.2.2. Bubble search randomizada
4.3. Construgao repetida dependente
4.3.1. Tterated greedy algorithm
4.3.2. Squeaky wheel optimization
4.4. Otimizagao por colonias de formigas

. Topicos

5.1. Hibridizagao de heuristicas
5.2. Hiper-Heuristicas
5.3. Heuristicas para problemas multi-objetivos
5.4. Heuristicas paralelas 0.

. Metodologia para o projeto de heuristicas

6.1. Escolha de parametros

6.2. Avaliagdo de meta-heuristicas
6.2.1. Teste de hipdteses L.
6.2.2. Comparagao de meta-heuristicas

6.3. Demais avaliagoes Lo oL

. Conceitos matematicos
A.1. Probabilidade discreta,

1. Introducao

Um problema de busca é uma relagao binaria P C I x S com instancias x € 1
e solugbes y € S. O par (x,y) € P caso y é uma solugao para x.

Definicao 1.1

A classe de complexidade FNP contém os problemas de busca com relagoes
P polinomialmente limitadas (ver defini¢do 1.3) tal que (x,y) € P pode ser
decidido em tempo polinomial.

A classe de complexidade FP contém os problemas em FNP para quais existe
um algoritmo polinomial A com

y para um y tal que (x,y) € P
AlX) =45 S :
“insoliivel” caso nao existe y tal que (x,y) € P

Teorema 1.1
FP=FNP se e somente se P=NP.

Prova. Ver por exemplo Papadimitriou [5, ch. 10.3]. |

Definicao 1.2
Um problema de otimizagdo TT = (P, @, opt) é uma relagdo bindria P C 1 x S
com instancias x € I e solugoes y € S, junto com

e uma fungdo de otimizagéo (func¢ao de objetivo) @ : P — N (ou Q).
e um objetivo: Encontrar minimo ou maximo
OPT(x) = opt{e(x,y) [(x,y) € P}
junto com uma solucao y* tal que f(x,y*) = OPT(x).
O par (x,y) € P caso y é uma solugdo para x.

Uma instancia x de um problema de otimizagdo possui solugdes S(x) = {y |
(x,y) € P}

Convencgao 1.1
Escrevemos um problema de otimizacao na forma

1. Introdugao

NOME
Instancia x
Solucdo y

Objetivo Minimiza ou maximiza @(x,y).

Com um dado problema de otimizagao correspondem trés problemas:
e Construgdo: Dado x, encontra a solugdo étima y* e seu valor OPT(x).
e Avaliagao: Dado x, encontra valor 6timo OPT(x).
e Decisao: Dado x e k, decide se OPT(x) > k (maximizacao) ou OPT(x) <

k (minimizagao).

Definicao 1.3
Uma relacao binaria R é polinomialmente limitada se

dp € poly : V(x,y) € R: |yl < p(lx]).

Definicao 1.4 (Classes de complexidade)

A classe PO consiste dos problemas de otimizagao tal que existe um algoritmo
polinomial A com @(x,A(x)) = OPT(x) para x € L.

A classe NPO consiste dos problemas de otimizagao tal que

(i) As instancias x € I s@o reconheciveis em tempo polinomial.
(ii) A relag@o P ¢ polinomialmente limitada.

(iii) Para y arbitrario, polinomialmente limitado: (x,y) € P é decidivel em
tempo polinomial.

(iv) ¢ é computavel em tempo polinomial.

1.1. Nao tem almoco de graca

“Sire in eight words I will reveal to you all the wisdom that I
have distilled through all these years from all the writings of all
the economists who once practiced their science in your kingdom.
Here is my text: ‘There ain’t no such thing as free lunch’ ” [9]

1.2. Representacgao de solugoes

A frase “there ain’t no such thing as free lunch” (TANSTAFEL) expressa que
uma vantagem (p.ex. o almogo de graga em bares dos EUA no século 19)
tipicamente é pago de outra forma (p.ex. comida salgada e bebidas caras).
Para problemas de busca e de otimizagao, Wolpert e Macready [10] provaram
teoremas que mostram que uma busca universal nao pode ter uma vantagem
em todos problemas de otimizacao.

Para um problema de otimizacgao supoe que @ : P — @ é restrito para um
conjunto finito @, e seja F = ®5) espaco de todas funcdes objetivos para
uma instancia do problema. Um algoritmo de otimizacao avalia pares de
solugdes com o seu valor (s,v) € S(x) x @. Seja D = Um>0(S(x) x ®)™ o
conjunto de todas sequencias de pares. Um algoritmo de otimizacao que nao
repete avaliagbes pode ser modelado como uma fun¢do a:d € D — {s | s #
si,para di = (si,vi),1 € [|[d]]}. A avaliacdo de um algoritmo de otimizacdo é
através uma fungao ®@(d). Ela pode, por exemplo, atribuir a d o valor minimo
encontrado durante a busca.

Teorema 1.2 (Wolpert e Macready [10])
Para algoritmos a,a’, um nimero de passos m e uma sequencia de valores
ve ™

Y Pvlfm,al=) Pi|f,m,a’l.

feF feF

O teorema mostra que uma busca genérica nao vai ser melhor que uma busca
aleatoéria em média sobre todas fungoes objetivos . Porém, uma grande fracao
das fungoes possiveis nao ocorrem na pratica (uma funcao aleatéria é incom-
pressivel, i.e. podemos especificd-la somente por tabulagio). Além disso, al-
goritmos de busca frequentemente aproveitam a estrutura do problema em
questao.

1.2. Representacao de solucoes

A representagido de solugdes influencia as operagoes aplicdveis e a sua com-
plexidade. Por isso a escolha de uma representagao é importante para o de-
sempenho de uma heuristica. A representacdo também define o tamanho do
espago de busca, e uma representagdo compacta (e.g. 8 coordenadas versus
permutagoes no problema das 8-rainhas) é preferivel. Para problemas restri-
tas uma representacao implicita que é transformado para uma representacao
direta por um algoritmo pode ser vantajoso.

Para uma discussdo abstrata usaremos frequentemente duas representacoes
elementares. Na representacao por conjuntos uma solucao é um conjunto
S € U de um universo U. Os conjuntos validos sao dados por uma colegao

1. Introdugao

V de subconjuntos de U. Na representa¢do por varidveis uma instancia é um
subconjunto I C U, e uma solugao é uma atribuigao de valores de um universo
V aos elementos em [.

Exemplo 1.1 (Representacao do PCYV)

Uma representagao por conjuntos para o PCV sobre um grafo G = (V,A) é
o universo de arestas U = A, com V todos subconjuntos que formam ciclos.
Um exemplo de uma representacao por varidveis € U =V = N com instancias
I = [n] para n cidades. Uma atribuicdo vélida define a posicao de i € I na
rota. O

1.2.1. TransformacGes entre representacées

Um transformador recebe uma representagao de uma solugao e transforma
ela numa representacao diferente. Um algoritmo construtivo randomizado
(ver capitulo 4) pode ser visto como um algoritmo que transforma uma se-
quencia de numeros aleatérios em uma solugao explicita. Ambas sdo repre-
sentagoes validas da mesma solugao. Essa ideia é aplicada também em algorit-
mos genéticos, onde a representagao fonte se chama fendtipo e a representacao
destino gendtipo. A ideia de representar uma solugao por uma sequencia de
nimeros aleatérios é usado diretamente em algoritmo genéticos com chaves
aleatérias (ver 3.4.1).

Uma transformagao é tipicamente sobrejetiva (“many-to-one”), i.e. existem
varias representacoes fonte para uma representacao destino. Idealmente, existe
o mesmo numero de representacoes fontes para representagoes destino, para
manter a mesma distribuicao de solugoes nos dois espacos.

Exemplo 1.2 (Representagao de permutacoes por chaves aleatdrias)
Uma permutacao de n elementos pode ser representado por n ntiimeros aleatérios

reais em [0, 1]. Para nimeros aleatdrios sdo ai,..., a,, seja 7T uma permutacao
tal que ar(1) < ---ax(n). Logo os nimeros a; representam a permutacao 7t
(ou). %

Uma transformacao pode ser é 1til caso o problema possui muitas restrigoes
e o espago de busca definido por uma representacao direta contém muitas
solugoes invalidas.

Exemplo 1.3 (Coloracgao de vértices)

Uma representacao direta da coloragao de vértices pode ser uma atribuicao
de cores a vértices. Para um limite de no maximo n cores, temos n™ possiveis
atribuicoes, mas vérias sao infactiveis. Uma representagao indireta é uma
permutacao de vértices. Para uma dada permutagao um algoritmo guloso
processo os vértices em ordem e atribui o menor cor livre ao vértice atual. A
corretude dessa abordagem mostra

1.2. Representacgao de solugoes

Lema 1.1

Para uma dada k-coloragao, sejam CqU- - -UCy as classes de cores. Ordenando
os vértices por classes de cores, o algoritmo guloso produz uma coloragao com
no maximo k cores.

Prova. Mostraremos por indugao que a coloracao das primeiras i classes nao
precisa mais que i cores. Para a primeira classe isso é obviou. Supoe que na
coloragao da classe 1 precisamos usar a cor i+ 1. Logo existe um vizinho com
cor i. Mas pelo hipétese da indugao o vizinho nao pode ser de uma classe
menor. Logo, temos uma aresta entre dois vértices da mesma classe, uma
contradicao. |
Com essa representagao, todas solugoes sao validas. Observe que o tamanho
do espaco da busca n! = v2mn(n/e)™ (por A.5) é similar nas duas repre-
sentagoes. O

Por fim, transformagoes podem ser tteis caso podemos resolver subproblemas
restritas do problema eficientemente.

Exemplo 1.4 (Sequenciamento em maquinas paralelas nao relacionadas)
Uma solugao para R || 3~ w;Cj direta é uma atribuigao das tarefas as maquinas,
junto com a ordem das tarefas em cada maquina.

Teorema 1.3
A solugao 6tima de 1 || 3~ w;Cj é uma sequencia em ordem de tempo de
processamento ponderado nao-decrescente p1/wy < -+ < ppnWy.

Prova. Supoe uma sequencia étima com pi/wi > piy1/Wit1. A contribuicao
das duas tarefas a fungao objetivo é w = w;C; +w;1Cirq. Trocando as duas
tarefas a contribuicao das restantes tarefas nao muda, e a contribuigao das
duas tarefas é

Wit1(Cip1 —pi) +WilCi +pit1) =W+ WiPip1 — Wip1pi.

Logo a fungao objetivo muda por A = wipi+1 — Wit1Pi, mas pelo hipétese
A <O0. |
Logo a ordem 6tima de uma maquina pode ser computada em tempo O(nlogn),
e uma representagao reduzida mantém somente a distribuigao das tarefas a
maquinas. o

As diferentes representacoes compactas podem ser combinadas.

Exemplo 1.5 (Simple assembly line balancing)
No “simple assembly line balacing problem” do tipo 2 temos que atribuir n
tarefas, restritas por precedéncias, & m de estacoes de trabalho. Cada tarefa

1. Introdugao

possui um tempo de execucao ti, e o tempo de estagdo é o tempo total das
tarefas atribuidas a uma estacdo. O objetivo é minimizar o maior tempo de
estacao.

Uma representagao direta é uma atribuigao de tarefas a estagbes, mas muitas
atribuigoes sao invalidas por nao satisfazer as precedéncias entre as tarefas.
Uma representacao mais compacta atribui chaves aleatérias as tarefas. Com
isso, uma ordem global das tarefas é definido: elas sao ordenados topologi-
camente, usando as chaves aleatérias como critério de desempate, caso duas
tarefas concorram para a préxima posi¢ao. Por fim, para uma dada ordem
de tarefas, a solugao 6tima do problema pode ser obtida via programacao
dindmica. Seja C(i,k) o menor tempo de ciclo para tarefas i,...,m em k
maquinas, a solugao 6tima é C(1,m) e C satisfaz

mini<j<n max{} ;. <; 4, CH+1,k+1)} parai<n, k>0
Ci,k) =<0 parai>n ,
00 parai<nek=0

e logo a solugdo étima pode ser obtida em tempo e espago O(nm) (pré-
calculando as somas parciais). O

Essa observacao é o motivo para o

Principio de projeto 1.1 (Subproblemas)

Identifica os subproblemas mais dificeis que podem ser resolvidos em tempo
polinomial é considera uma representacao que contém somente a informacao
necessario para definir os subproblemas.

1.3. Estratégia de busca: Diversificacao e intensificacao

No projeto de uma heuristica temos que balancear dois objetivos antagonis-
tas: a diversificacdo da busca e a intensificacao de busca. A diversificacao da
busca (também chamada ezploration) procura garantir uma boa cobertura do
espaco de busca, evitando que a solugoes analisadas ficam confinado a uma
regido pequena do espago total. A diversificagao ideal é uma algoritmo que re-
petidamente gera solugoes aleatérias. Em contraste a intensifica¢do (também
chamada ezploitation) procura melhor a solu¢do atual o mais possivel. Um
exemplo de uma intensificacao seria analisar todas solugbes dentro uma certa
distancia da solucao atual.

1.4. Notas

1.4. Notas

Mais informacoes sobre os teoremas NFL se encontram no artigo original de
Wolpert e Macready [10] e em Burke e Kendall [2, ch. 11] e Rothlauf [6,

ch.3.4.4].

2. Busca por modificacao de solucoes

Uma busca local procura melhorar uma solugao de uma instancia de um pro-
blema aplicando uma pequena modificagao, chamada movimento. O conjunto
de solugoes que resultam de uma pequena modificagao formam os vizinhos da
solucao.

Definicao 2.1

Uma wvizinhan¢a de uma instancia x de um problema de otimizagao IT é uma
funcio N : S(x) — 25 Para uma solucdo s, os elementos N(s) sido os
vizinhos de s. Os vizinhos melhores de s sao B(s) ={s’ € N(s) | @(s’) < @(s)}.
Uma vizinhanca é simétrica, caso para s’ € N(s) temos s € N(s’).

Para uma dada vizinhanga um minimo local é uma solugao s, tal que @(s) <
@(s’) para s’ € N(s) e um mdzimo local caso @(s) > ¢(s’) para s’ € N(s).
Caso uma solucao é estritamente menor ou maior que os seus vizinhos, o étimo
local é estrito. Uma vizinhanca é exata, caso cada étimo local também é um
otimo global.

Definicao 2.2

O grafo de vizinhanca G = (V,E) para uma instancia x de um problema de
otimizacao TT com vizinhanga N possui vértices V = {y | (x,y) € P} e arcos
(s,s’) para s,s’ € S(x), s’ € N(s). Para uma vizinhanca simétrica, o grafo
de vizinhanga ¢ efetivamente nao-direcionado. Uma solugao s’ é alcangédvel a
partir da solucéo s, caso existe um caminho de s para s’ no grafo de vizinhanga.
O grafo G é fracamente otimamente conectada caso a partir de cada solugao
s uma solugao 6tima é alcangavel.

Uma vizinhanca € suficiente para definir uma busca local genérica. Ela seleci-
ona um vizinho de acordo com uma distribuicao P, sobre a vizinhanca fechada
N(s) = {s}UN(s). Para uma distribuicdo Ps sobre N(s), a extensao padrao
para a vizinhanga fechada é definido por

ﬁs(s') = {] - ZS/EN(S) Ps(s’) paras’'=s

| P(s”) caso contrario

Algoritmo 2.1 (LocalSearch)
Entrada Solugao inicial s, vizinhanca N, distribui¢ao Ps.

11

2. Busca por modificacao de solugoes

Saida Uma solugdo com valor no maximo f(s).
LocalSearch (s)=

s*i=s

repeat

—_

seleciona s’ € N(s) de acordo com Py
s: =g’
$* = min{s*, s}
until critério de parada satisfeito
return s*
end

© 00O Uk Wi

A complexidade de uma busca local depende da complexidade da selecao e do
nimero de iteragoes. A complexidade da selegao muitas vezes é proporcional
ao tamanho da vizinhanga |[N(s)|.

Duas estratégias bésicas para uma busca local sao

Caminhada aleatéria (ingl. random walk) Para N(s) # (), define Pg(s) =
T1/IN(s).

Amostragem aleatéria (ingl. random picking) Uma caminhada aleatéria com
N(s) = S(x) para todo s € S(x).

Exemplo 2.1 (Politopos e o método Simplex)

O método Simplex define uma vizinhanca entre os vértices do politopo de um
programa linear: cada par varidavel entrante é variavel sainte admissivel define
um vizinho. Essa vizinhanga é simétrica, conectada, fracamente otimamente
conectada e exata. Logo o método resolve o problema da programacao linear.

O

Exemplo 2.2 (k-exchange para o PCV)

Uma vizinhanga para o PCV é k-exchange Croes [3]: os vizinhos de um ciclo
sao obtidos removendo k arcos, e conectando os k caminhos resultantes de
outra forma. Para qualquer k fixo, essa vizinhanca é simétrica, conectada,
fracamente otimamente conectada, mas inexata (por qué?). O tamanho da
vizinhanca é O(nX) para n cidades.

3-exchange
—_—

12

2.1. Busca locais monétonas

O

Exemplo 2.3 (k-SAT)

O problema k-SAT é decidir se existe uma atribuigao x € {0, 1} que satisfaz
uma férmula @(x) da légica proposicional em forma normal conjuntivo com k
literais por clausula.

Seja x —yl1 = 3_icpy[xi # yil a distancia Hamming entre dois vetores x,y €
{0,1}™. Uma vizinhanga conhecida para SAT é k-flip: os vizinhos de uma
solucao sao todas solugdes de distancia Hamming k. A vizinhancga é simétrica,
fracamente otimamente conectada para k = 1, mas inexata. O tamanho da
vizinhanca é O(nk).

O

2.1. Busca locais monétonas

Uma busca local monétona permite somente modificagoes que melhoram a
solugdo atual, i.e. no algoritmo LocalSearch sempre temos Ps(s’) = 0 para s’ &
B(s) . Logo, o algoritmo termina num &timo local. Pela monotonia também
nao é necessario guardar a melhor solucao encontrada. A busca depende da
estratégia de selecao da nova solucao s’, também conhecido como regra de
pivoteamento.

Algoritmo 2.2 (LocalDescent)
Entrada Solucao inicial s, vizinhanga N, distribuicao Ps.

Saida Uma solugéo com valor no méximo f(s).

1 LocalDescent (s):=

2 repeat

3 seleciona s’ € N(s) de acordo com Py
4 s:=s’

5 until s’'=s

6 return s

7

end

Descida aleatéria (ingl. random descent) Para B(s) # () define Pg(s’) =
1/|B(s)| para s’ € B(s). Esta estratégia é equivalente com a primeira
melhora, mas em ordem aleatoria.

Primeira melhora (ingl. first improvement) A primeira melhora supde uma
vizinhanca ordenada B(s) = {bq,...,bx}. Ela seleciona f = min{i |

13

2. Busca por modificacao de solugoes

f(bi) < f(s)}, i.e. Ps(bi) = [i = f]. O método é conhecido pelos nomes
“hill climbing” (no caso de maximizacao) ou “hill descent” (no caso de
minimizagao).

Melhor melhora (ingl. best improvement) Para B(s) # 0, define B*(s) =
{s’ € B(s) | f(s’) = mingrep(s) f(s”) e Ps(s’) = 1/|B*(s)| para s’ €
B*(s). O método é conhecido pelos nomes “steepest ascent” (no caso de
maximizacao) ou “steepest descent” (no caso de minimizagao).

Busca por amostragem (ingl. sample search) Seleciona um subconjunto S C
N(x) aleatério de tamanho «|N(x)|, define B*(s) = {s’ € B(s) | f(s’) =
mingecs f(s”) e Ps(s’) =1/|B*(s)| para s’ € B*(s).

As estratégias obviamente podem ser combinadas, por exemplo, aplicar uma
estratégia de “primeira melhora” apds uma amostragem.

A qualidade de uma busca local depende da vizinhanga: para vizinhangas
maiores esperamos encontrar étimos locais melhores. Porém a complexidade
da busca cresce com a vizinhanca. A arte, porém, consiste em balancear estes
dois objetivos.

Exemplo 2.4 (Método Simplex)

Nao conhecemos regras de pivoteamento para o método Simplex que garantem
uma complexidade polinomial. Porém, a programacao linear possui solugoes
polinomiais (que ndo usam busca local). Por isso, a complexidade de encontrar
o6timos locais pode ser menor que a complexidade do método iterativo. O

Exemplo 2.5 (OneMax)

Para um x* € {0, 1}" fixo o problema OneMax consiste encontrar o minimo de
f(x) =[x —x*|7, i.e. x*. O nimero de bits X corretos de uma solucao aleatéria
satisfaz E[X] = n/2 e Pr[X < n/3] < e ™36 ¢ Pr[X > 2n/3] < e ™/54
(aplicando limites de Chernoff (A.4)).

Uma descida aleatdria precisa tempo O(n) para selecionar um vizinho, ava-
liando a funcdo objetivo em O(1), e O(n) passos, para um tempo total de
O(n?). Uma analisa mais detalhada é o seguinte: para selecionar um vi-
zinho melhor, podemos repetidamente selecionar um vizinho arbitrario, até
encontrar um vizinho melhor. Com 1 bits diferentes, encontramos um vizinho
melhor com probabilidade i/n. Logo a selecdo precisa esperadamente n/i
passos até encontrar um vizinho melhor (ver lema A.2) e logo no maximo

Z n/i=nH, =~ nlogn
1<i<n

passos até encontrar x*.

14

2.1. Busca locais monétonas

A primeira melhora precisa no pior caso (todos bits diferentes) tempo esperado
O(n/w) para encontrar um vizinho melhor, e a melhor melhora tempo @(n).
Logo, ambas precisam tempo @(n?) para encontrar x*. %

Exemplo 2.6 (GSAT)

O algoritmo GSAT [8] aplica a estratégia “melhor melhora” na vizinhanca
1-flip com func¢ao objetivo sendo o nimero de cldusulas satisfeitas. Ele perio-
dicamente recomeca a busca numa solugao aleatoria. %

Exemplo 2.7 (WalkSAT)

WalkSAT usa uma estratégia de selegao mais sofisticada: em cada passo uma
cldusula nao satisfeita é selecionada, e uma varidvel aleatéria dessa clausula
é invertida. (O WalkSAT proposto por Selman, Kautz e Cohen [7] seleciona
uma variavel que nao invalida nenhuma outra clausula ou com probabilidade
P uma que invalide o menor nimero e com probabilidade 1—p uma aleatéria.)
Logo a vizinhanga é um subconjunto da vizinhanga 1-flip. WalkSAT também
recomega a busca a partir de uma solugao aleatdria periodicamente.

Lema 2.1

Seja @ uma formula em k-CNF satisfativel com n varidveis. O algoritmo
WalkSAT precisa esperadamente O(n3/2(2(k — 1)/k)™) passos até encontrar
uma atribuicao que satisfaz .

Prova. Seja a uma atribuigdo que satisfaz @. Vamos determinar a proba-
bilidade q que um periodo de WalkSAT encontra a. Com p; = (7].1)2_“ a
probabilidade de iniciar com distancia Hamming j de a, e q; a probabilidade
de encontrar a a partir da distancia j, temos

a= > P9 (*)

0<j<n

A distdncia Hamming para a diminui com probabilidade pelo menos 1/k e
aumento com probabilidade no méximo 1—1/k. Podemos modelar o WalkSAT
como caminhada aleatdria entre classes de solugoes com distancia Hamming
j, com uma probabilidade de transi¢do de j para j — 1 (“para baixo”) de 1/k
e de j para j + 1 (“para acima”) de 1 —1/k. Com isso q; é pelo menos a
probabilidade de chegar na classe 0 a partir da classe j em no méximo 3n
passos. Para isso podemos fazer j passos para baixo, ou j+ 1 para baixo e um
para acima, e no geral j 4+ 1 para baixo e 1 para acima. Logo

. 21\ (k=1
4 = oglg(sifj)/z 1 k k)

15

2. Busca por modificacao de solugoes

Para 1 = o com « € (0,1/2) temos

(0207 (k=T 1) :
o= ("SNE) G))

Aplicando o lema A.1 é possivel estimar

(4205 gy (14 20)7 (142 T
%4 = x 14+«
) S —1/2 T4+2a* /1420 T k-1 o 1 (1+a)\)
4 > (8)) ((.) <1+oc) . ! |

Escolhendo o = 1/(k — 2) e simplificando obtemos
VYERERY
> (8)))
a2 6 ()
Finalmente, substituindo em (¥*)
n 1 J
> Zf'n_ zfn : 71/2
az2me Y (eme (5
jeml]
j
“n ~1/2 n 1 n—j
e ¥ (7) ()
jem]

=2 (1) = s ()

Logo, o numero esperado de periodos é

e logo

1/q:¢871(2“<k”)

e como cada periodo precisa tempo O(n) o resultado segue. [|
Para uma férmula satisfativel com k = 3, por exemplo, o algoritmo precisa
O(n3/2(4/3)™) passos.

E possivel transformar esta algoritmo num algoritmo randomizado que decide
se uma féormula é satisfativel com alta probabilidade. O

16

2.1. Busca locais monétonas

Exemplo 2.8 (2-opt para o PCV)
A estratégia 2-opt para o PCV é uma descida aleatéria na vizinhanga 2-
exchange. Similarmente, obtemos k-opt na vizinhanca k-exchange.

Teorema 2.1
Para k > 2, n > 2k + 8 e para o« > 1/n existe uma instancia x do PCV com
n cidades, tal que

k-opt(x)

oPT(x) ~ &

Prova. Para um k par, define distancias

diz =1
di,it1 =dn,1 =1/na ie2,n)
dit3,2k44 = 1/nx
dj 2kia—j = 1/nx j e K]
di; = kn caso contrario

Um ciclo Hamiltoniano étimo é dado por arestas (i, préoximo(i)) com

2k +4—1 paraiimparei<k
i+1 paraiparei<k
i+1 para i € [k, k+ 2]
L. . 2k +4 parai=k+3

préximo(i) = < | . .
1—1 para i impar e i € [k + 3,2k + 4)
2k+4—1 paraipareie [k+3,2k+4)
i4+1 para i€ 2k +4,n]
1 parai=mn

A otimalidade segue do fato que todas arestas possuem o peso minimo 1/na.
Este ciclo ¢ tnico ciclo 6timo (Exercicio!). Por outro lado, o ciclo (1,2,...,n)
possui peso total 1+ (n—1)/n«, mas tem k + 1 arestas diferentes. Logo este
ciclo é um minimo local para k-exchange e para a instancia acima temos

k-opt(x)
———=a+1-1/n>a
OPT(x) /
Para provar o caso para um k impar, podemos observar que um minimo local
para o k 4+ T-exchange, também é um minimo local para k-exchange. |
O

17

2. Busca por modificacao de solugoes

Figura 2.1.: Caminhos construidos na prova do teorema 2.1. Esquerda: n =
22, k = 8. Meio: n =12, k = 2. Direita: n =40, k = 16.

2.1.1. Segue os vencedores

Segue os vencedores (ingl. go with the winners) [1] é uma estratégia que tra-
balho com multiplas solugoes. Caso solugao percorre uma trajetéria de uma
busca local monétona. Caso uma das trajetdrias termina num minimo local,
ela continua no ponto atual de uma das outras trajetérias que ainda nao che-
garam num minimo local. A busca termina, caso todas trajetérias terminaram
num minimo local.

Algoritmo 2.3 (Segue os vencedores)
Entrada Solugao inicial s, vizinhanga N, distribuicao Pg, o nimero de
solugoes k.

Saida Uma solugdo com valor no méximo f(s).

1 SV(s)=

2 si:=s para i€ [K]

3 s¥=s

4 repeat

5 seja L:={ic[k]|B(s) =0}

6 atribui as solucgdes em L

7 uniformemente solug¢oes em [k]\L
8 seleciona s{em(si) de acordo com ﬁsi
9 i i=8{

10 $* = min{s,,S$1,...,Sk}

11 until L = [K]

12 return s*

13 end

Uma variante [4] distribui as solugdes de acordo com o niimero de vizinhos
melhores.

18

2.2. Buscas locais nao-monétonas

2.2. Buscas locais ndao-monétonas

Uma busca local nao-monétona permite piorar a solucao atual.

Algoritmo 2.4 (S-LocalSearch)
Entrada Solucao inicial sg.
Saida Solucéo s tal que f(s) < f(s).
1 S—LocalSearch (s)=
2 repeat
3 s*i=s
4 seleciona S C N(s)
5 s’ = argmin{f(s) | s € S}
6 if f(s’) < f(s)V acceptable(s’) then
7 s:=s'
8 s* := min{s*, s}
9 endif
10 until critério de parada satisfeito
11 return s*
12 end

19

2. Busca por modificacao de solugoes

2.2.1. Busca tabu

2.2.2. Algoritmo Metropolis e Temperada simulada
2.2.3. Aceitacao por limite

2.2.4. Grande Dilavio

2.2.5. Aceitacao atrasada

2.2.6. Otimizacao extremal

2.2.7. Busca local guiada

2.2.8. Stochastic hill climbing

2.3. Buscas locais avancadas

2.3.1. Busca local iterada
2.3.2. Busca local com vizinhanca variavel

2.3.3. Busca local em vizinhancas grandes

20

3. Busca por recombinacao de solucoes

3.1. Religamento de caminhos
3.2. Scatter search
3.3. Probe

3.4. Algoritmos genéticos e meméticos

3.4.1. Algoritmos genéticos com chaves aleatérias

3.5. GRASP com religamento de caminhos

21

4. Busca por construcao de solucoes

4.1. Construcao simples

4.1.1. Algoritmos (semi-)gulosos
4.1.2. Algoritmos de prioridade

4.1.3. Busca por raio

4.2. Construcao repetida independente
4.2.1. GRASP

4.2.2. Bubble search randomizada

4.3. Construcao repetida dependente
4.3.1. Iterated greedy algorithm

4.3.2. Squeaky wheel optimization

4.4. Otimizacao por colonias de formigas

23

5. Topicos

5.1.
5.2.
5.3.
5.4.

Hibridizacao de heuristicas
Hiper-Heuristicas
Heuristicas para problemas multi-objetivos

Heuristicas paralelas

25

6. Metodologia para o projeto de heuristicas

6.1. Escolha de parametros

6.2. Avaliacao de meta-heuristicas

6.2.1. Teste de hipdteses

6.2.2. Comparacao de meta-heuristicas

6.3. Demais avaliacoes

27

A. Conceitos matematicos

Definicao A.1
Uma funcao f é conveza se ela satisfaz a desigualdade de Jensen

f(Ox + (1 — O)y) < Of(x) + (1 — O)f(y). (A1)

Similarmente uma fungao f é concava caso —f é convexo, i.e., ela satisfaz

f(Ox + (1 —0)y) > Of(x) + (1 —O)f(y). (A.2)
Exemplo A.1
Exemplos de funcoes convexas sao x2%, 1/x. Exemplos de funcdes concavas
sao logx, v/X. O

Proposigao A.1
Para } ;cr,;®i =1 e pontos xi, i € [n] uma fungao convexa satisfaz

f(Z @ixi) < Z @if(xi) (A3)
ie[n]

ie[n]

e uma fungao concava

f() Oxi)>) Oif(xi) (A.4)
ien]

ien]

Prova. Provaremos somente o caso convexo por indugao, o caso concavo
sendo similar. Para n = 1 a desigualdade ¢ trivial, para n = 2 ela é vélida
por definicio. Para n > 2 define © = Zie[zm] ©; tal que ® +©® = 1. Com
isso temos

f(Z @ixi) = f(@1X1 + Z @ixi) = f(©1x7 +@y)

ie[n] i€2,n]

29

A. Conceitos matematicos
onde y = Zje[z,n](®j/®)xj’ logo

f() Oxi) < O:1f(x1) + Of(y)

ie[n]

=01 f(x1) + Of(Z (©;/0)x;)

Definicao A.2
O fatorial é a funcao

n:N—>N:n— H i.

1<i<n

Temos a seguinte aproximacao do fatorial (férmula de Stirling)

nl = 27m(%>n(1 +0(1/n)

Uma estimativa menos preciso pode ser obtido estimando

que implica

Definicao A.3 (Entropia bindria)

(A.5)

A entropia bindria para o € (0,1) é h(x) = —alog, « — (1 — &) log, 1 — «x.

Lema A.1
Para o € (0,1/2]

(Bnal — o)) /2 2R < Z <n) < ghlam,

30

Prova. Para a segunda desigualdade temos

=(a+(-a)= 3 (?) ot (1—o)™ !

1<i<n

1S§n(x <?> (1i(oc>i (T—o™

n [0 n«x N
1§§n¢x <1> (1—0C> (1—-«
— "% (] —) (T—xIn n
e g ()

Y

v

1<i<na«
n
:2—nh(oc) ()
2 (s
1<i<na«
O terceiro passo é valido porque para « € (0,1/2] temos /(1 —) < 1 e
i< na. |

31

A. Conceitos matematicos

A.l. Probabilidade discreta
Probabilidade: Nocoes basicas
e FEspago amostral finito Q de eventos elementares e € Q.

e Distribuicao de probabilidade Pr[e] tal que

Prle] >0;) Prle] =1

ecQ)

e Fventos (compostos) E C Q com probabilidade

PrlE] = Z Prle]

ecE

Exemplo A.2
Para um dado sem bias temos Q = {1,2,3,4,5,6} e Pr[i] = 1/6.
Par = {2,4, 6} tem probabilidade Pr[Par] = Zeepar Prle] = 1/2.

Probabilidade: Nocoes basicas

e Varidvel aleatoria
X: Q- N

e Escrevemos Pr[X = 1] para Pr[X~'(i)].
e Varidveis aleatérias independentes

PIX=xeY =y] =PX=x]P[Y =y]

Valor esperado

EX]=) PrlelX(e) =) iPr[X =i

ecQ i>0

e Linearidade do valor esperado: Para varidveis aleatorias X, Y

E[X+ Y] = E[X] + E[Y]

32

O evento

O

A.1. Probabilidade discreta

Prova. (Das formulas equivalentes para o valor esperado.)

Z Pr[X =ili = Z Pr[x!

0<i 0<i
=y Z PrlelX(e) =) PrlelX(e
0<ieeX T(1) ecQ
|
Prova. (Da linearidade.)
EX+Y =) Prle Y(e))
ecQ)
=) PrlelX(e)) Prle]Y(e)) = EIX] + EIY]
ecQ ecQ
[]
Exemplo A.3

(Continuando exemplo A.2.)
Seja X a varidvel aleatério que denota o numero sorteado, e Y a variavel
aleatdrio tal que Y = [a face em cima do dado tem um ponto no meio].

X|=) PriX=ili=1/6) i=21/6=7/2

i>0 1<i<é6
=Y PrlY=ili=PrlY =1 =1/2EX+Y] =EX +E[Y] =4
i>0
O
Lema A.2

Para tentativas repetidas com probabilidade de sucesso p, o nimero esperado
de passos para o primeiro sucesso é 1/p.

Prova. Seja X o nimero de passos até o primeiro sucesso. Temos P[X = k] =

(1—p)* 'p e logo
=Y kPX=Kk =) k(1-p)*'

k>1 k>1

Y k(I—pF+) (1-p)*

k>1 k>0

p((1=p)/p*+1/p) =1/p.

33

A. Conceitos matematicos

Proposicao A.2
Para ¢ convexo @(E[X]) < E[@(X)] e para ¢ concavo @(E[X]) > E[@(X)].

Prova. Pela proposigao A.1. |

Proposicao A.3 (Desigualdade de Markov)
Seja X uma varidvel aleatdéria com valores nao-negativas. Entao, para todo
a>0

Pr[X > a] < E[X]/a.

Prova. Seja I =[X > a]. Como X > 0 temos I < X/a. O valor esperado de I
S E[I] = Pr[I =1] = Pr[X > da], logo

Pr[X > a] = E[I] = E[X/a] = E[X]/a.

|
Proposicao A.4 (Limites de Chernoff (ingl. Chernoff bounds))
Sejam Xi,..., Xy indicadores independentes com Pr[Xi] = pi. Para X =
> i Xi temos para todo & > 0

ed "
PrX> (1+8)p) < (UHS)“W)

para todo & € (0,1)

e ® g
PriX < (1T—-98)ul < ((1_5)(15))

para todo & € (0,1]
PrX > (1+8)u] < e #8°/3
e para todo 6 € (0,1)

PriX < (1—8)ul < e M8°/2,

Exemplo A.4

Sejam Xj,..., Xy indicadores com Pr[X; = 1] = p; e X = Y} ; Xi. Temos
u=E[X] =), E[Xi] = ak. Qual a probabilidade de ter menos que a metade
dos X; =17

Pr[X < |k/2]] < Pr[X < k/2] = Pr[X < p/20] =
PrX < u(1 = (1—1/2a))] < e H07/2 = g~ k/2ala1/2)

2

34

Bibliografia

1]
2]

David Aldous e Umesh Vazirani. ““Go With the Winners” Algorithms”.
Em: Proc. 26th STOC. 1994.

Edmund K. Burke e Graham Kendall, eds. Search methodologies.
Springer, 2005. URL: http://www . springer . com/mathematics /
applications/book/978-0-387-23460-1.

G. A. Croes. “A Method for Solving Traveling-Salesman Problems”. Em:
Oper. Res. 6 (1958), pp. 791-812. DOI: 10.1287/opre.6.6.791.

Tassos Dimitriou e Russell Impagliazzo. “Towards an Analysis of Local
Optimization Algorithms”. Em: Proc. 28th STOC. 1996.

Christos Papadimitriou. Computational Complexity. Addison-Wesley,
1993.

Franz Rothlauf. Design of Modern Heuristics: Principles and Applica-
tion. INF: Recurso eletronico. Springer, 2011. 1SBN: 978-3540729617.
URL: http://link.springer.com/book/10.1007/978-3-540-72962-
4/page/1.

B. Selman, H. Kautz e B. Cohen. “Noise strategies for improving local
search”. Em: Proc. 12th Nat. Conf. Artif. Intell. 1994, pp. 337-343.

B. Selman, H. Levesque e D. Mitchell. “A new method for solving hard
satisfiability problems”. Em: Proc. 10th Nat. Conf. Artif. Intell. 1992,
pp. 440-446.

The Pittsburg Press. Economics in eight words. 1938.

David H. Wolpert e Wllliam G. Macready. “No Free Lunch Theorems
for Optimization”. Em: IEEE Trans. Fvol. Comp. (1997), pp. 67-82.

35

http://www.springer.com/mathematics/applications/book/978-0-387-23460-1
http://www.springer.com/mathematics/applications/book/978-0-387-23460-1
http://dx.doi.org/10.1287/opre.6.6.791
http://link.springer.com/book/10.1007/978-3-540-72962-4/page/1
http://link.springer.com/book/10.1007/978-3-540-72962-4/page/1

Indice

2-opt, 17
k-SAT, 13
k-exchange, 12
k-flip, 13
k-opt, 17
FNP, 3

FP, 3

NPO, 4

PO, 4

aceitagao

atrasada, 20

por limite, 20
algoritmo genético

com chaves aleatérias, 6
almocgo de graga, 4
amostragem aleatéria, 12

beam search, ver busca por raio

best improvement
seemelhor melhora, 14
Busca local
guiada, 20
busca por amostragem, 14
busca por raio, 23
busca tabu, 20

caminhada aleatoria, 12
Chernoff bounds, 34

descida aleatoéria, 13
desigualdade de Jensen, 29
Desigualdade de Markov, 34
distancia Hamming, 13

distribuicao, 32
diversificagao, 8

Entropia binaria, 30
espago amostral, 32
estrito, 11
evento, 32
elementar, 32
exploitation, 8
exploration, 8
extremal optimization, ver otimizacao
extremal

férmula de Stirling, 30
fatorial, 30
fenétipo, 6
first improvement
seeprimeira melhora, 14
funcao
concava, 29
convexa, 29
fungao de otimizagao, 3
funcao objetivo, 3

genotipo, 6
go with the winners
seesegue os vencedores, 18
grafo de vizinhanga, 11
grande diluvio, 20
great deluge, ver grande delivio

intensificacao, 8

Jensen

37

Indice
desigualdade de, 29

Limites de Chernoff, 34
linearidade do valor esperado, 33

maximo local, 11

multiplos inicios, 23

minimo local, 11

melhor melhora, 14

movimento, 11

multi-start, ver multiplos inicios

OneMax, 14
otimizagao extremal, 20

path relinking

seereligamento de caminhos, 21
politopo, 12
primeira melhora, 14
probabilidade, 32
problema

de avaliacao, 4

de construgao, 4

de decisao, 4
problema de busca, 3
problema de otimizagao, 3
programa linear, 12

random descent

seedescida aleatéria, 13
random picking

seeamostragem aleatoria, 12
random walk

seecaminhada aleatéria, 12
relagao

polinomialmente limitada, 4
religamento de caminhos, 21
representagao, o5
representagao por conjuntos, 5
representagao por variaveis, 6

sample search

38

seebusca por amostragem, 14
segue os vencedores, 18
Simplex, 12
simulated annealing, ver tempera
simulada
Stirling, James, 30

tabu search, ver busca tabu
TANSTAFEL, 5

tempera simulada, 20
transformador, 6

valor esperado, 33
variavel aleatoria, 32, 33

independente, 32
vizinhanga, 11

exata, 11

fracamente otimamente conec-

tada, 11

grafo de, 11

simétrica, 11
vizinhanga”fechada, 11
vizinhangas grandes, 20
vizinho, 11

	Conteúdo
	Introdução
	Não tem almoço de graça
	Representação de soluções
	Transformações entre representações

	Estratégia de busca: Diversificação e intensificação
	Notas

	Busca por modificação de soluções
	Busca locais monótonas
	Segue os vencedores

	Buscas locais não-monótonas
	Busca tabu
	Algoritmo Metropolis e Temperada simulada
	Aceitação por limite
	Grande Dilúvio
	Aceitação atrasada
	Otimização extremal
	Busca local guiada
	Stochastic hill climbing

	Buscas locais avançadas
	Busca local iterada
	Busca local com vizinhança variável
	Busca local em vizinhanças grandes

	Busca por recombinação de soluções
	Religamento de caminhos
	Scatter search
	Probe
	Algoritmos genéticos e meméticos
	Algoritmos genéticos com chaves aleatórias

	GRASP com religamento de caminhos

	Busca por construção de soluções
	Construção simples
	Algoritmos (semi-)gulosos
	Algoritmos de prioridade
	Busca por raio

	Construção repetida independente
	GRASP
	Bubble search randomizada

	Construção repetida dependente
	Iterated greedy algorithm
	Squeaky wheel optimization

	Otimização por colônias de formigas

	Tópicos
	Hibridização de heurísticas
	Híper-Heurísticas
	Heurísticas para problemas multi-objetivos
	Heurísticas paralelas

	Metodologia para o projeto de heurísticas
	Escolha de parâmetros
	Avaliação de meta-heurísticas
	Teste de hipóteses
	Comparação de meta-heurísticas

	Demais avaliações

	Conceitos matemáticos
	Probabilidade discreta

	Bibliografia
	Índice

