9. Parallel sorting

- Overview
- Sequential sorting algorithms
- Merging and sorting networks
- Odd-even sorting
- Parallel sample sort

Sequential sorting algorithms

- Mergesort
 - Sort recursively and merge two sorted sequences
- Quicksort
 - Partition at some pivot, and sort recursively: O(n log n)
- Radix sort
 - Sort stably from LSB to MSB
- Insertion sort, Bubble sort, Macaroni sort, ...
- Remember
 - Comparison-based sorting needs Ω (n logn) steps
 - If we can use additional information on the input, we can do it in O(n)
 - We will look at comparison-based sorting here

Example: Bubblesort

```
Bubblesort(A) :=
   // let A be (a<sub>1</sub>, ..., a<sub>n</sub>)
   for i in 1..n
     for j in i+1..n
     if (a<sub>j-1</sub> > a<sub>j</sub>)
        swap(a<sub>j-1</sub>, a<sub>j</sub>)
```


Example: Quicksort

```
Quicksort(A) :=
  if length(A) = 1 then
    return A
  (A1,A2) := Partition(A)
  return Quicksort(A1) + Quicksort(A2)
Partition(A) :=
  choose some pivot p
  return
    (\{ a in A | a \le p \}, \{ a in A | a > p \})
```


Example: Mergesort

```
Mergesort(A) :=
    // Let A = (a<sub>1</sub>, ..., a<sub>n</sub>)
    if n = 1
        return A
    m := floor(n/2)
    A1 := MergeSort( (a<sub>1</sub>, ..., a<sub>m</sub>) )
    A2 := MergeSort( (a<sub>m+1</sub>, ..., a<sub>n</sub>) )
    Merge(A1,A2)
```


- Given the importance of sorting, we could try to build it in HW
 - This leads to sorting networks
 - Basic element: compare-and-exchange (CX)
- Examples

- How do we compare networks?
- A sorting network is a DAG, with three kinds of vertices
 - n inputs, of in-degree 0, out-degree 1
 - n outputs of in-degree 1, out-degree 1
 - gates of in- and out-degree 2 (our comparators)
- The depth of
 - inputs is 0
 - any gate is 1 + maximum depth of its predecessors
 - outputs is the depth of its predecessors
- The depth of a network is the maximum depth over its outputs

- Implementation of Bubble sort
 - First inner loop can be done with n-1 comparators
 - After that, we sort the remaining n-1 elements
- Cost: O(n²) comparators, time O(n)
- Can we do better?

- We implement merging
 - Assumption: We want to sort 2ⁿ elements
 - Start merging sequences of single elements (which are sorted)
 - Merge resulting sequences of 2,4,8,... elements up to 2ⁿ⁻¹
- Merging a small number of elements

- For larger n: we merge recursively
 - the odd elements of a and b
 - the even elements of a and b
- and sort the output

- Why does this work?
- Look at element d_i
 - There are at least i-1 odd and i-2 even smaller elements
 - There are at least n-i odd and n-i+1 even larger elements
 - So the final position is 2i-2 or 2i-1
- Look at element e_i
 - There are at least i-1 even and i odd smaller elements
 - There are at least n-i even and n-i-1 odd larger elements
 - So the final position is 2i or 2i+1
- In summary, we know
 - d₁ is the smallest and e_n is the largest element
 - Every pair d_i,e_{i-1}, for 2 <= i <= n compete for positions 2i-2 and 2i-1</p>

- What does this cost?
- Number of comparators
 - c(2n) = 2c(n) + n-1
 - This has solution c(n)=O(log n)
- Time
 - t(2n)=t(n)+1
 - This has solution t(n)=O(log n)
- Work
 - w(n)=c(n) t(n) =O(n log n log n)

- Finally, we can sort: this is called odd-even Mergesort (Batcher 68)
- Combine k = 0, ..., log n -1 stages of mergers
 - Stage k merges 2^{n-k-1} pairs of lists of size 2^k
- Final costs
 - Number of comparators O(n log² n)
 - Time O(log² n), Work O(n log⁴ n)
- Discussion
 - Excellent speed up, but high number of comparators (more than elements!)
 - Irregular architecture: not feasible to implement for large n
- Observations
 - Networks with time O(log n) and O(n log n) comparators exist
 - This is asymptotically best; but for finite sizes >16, we don't know the

Parallel sort

- Another try at Bubble sort, this time in SW
 - We assume we have n processors, each "owning" an element
 - Then, in each phase
 - » The odd processors execute compare-and-exchange with their right neighbors
 - » Then the even processors do the same
 - In floor(n/2) phases the sequence is sorted
- Cost?
 - Work is O(n²): not work-optimal
 - Time is O(n): just a log n speedup over Quicksort
- Same as above

Parallel Bubblesort

- Can we do better?
- Idea: Use lesser processors, group the items
 - On p processors, each one works in n/p items
 - Each one locally sorts at start
 - Then each processor does the same as before, but blockwise
 - We have now O(p) phases
- Cost now?
 - Work: O(p (n/p) log n/p) + O(p p n/p) = O(n log n) + O(p n)
 - Time: $O(n/p \log n) + O(n)$
 - Communication: O(n)
- This is optimal for p < log n

Sorting by sampling

- Another idea: extend Quicksort
 - Divide input into p partitions
 - Each processors sorts one partition in parallel
 - We assume that each processor has n/p elements at start
- Problems
 - How to partition the data evenly?
 - How to communicate the data afterwards?
- A randomized solution: Sample sort

Sample sort: Basic idea

- Draw in parallel a set of k=sqrt(n) random samples s₁,...,s_k
 - These will be our pivots
 - Let s_0 be -infinity, s_{k+1} be infinity
- Rearrange all elements in parallel into sqrt(n)+1 buckets
 - Bucket i contains elements in the interval s_{i-1},...,s_i
- Sort each bucket in parallel recursively

Theorem (Jaja):

With high probability this terminates in time O(log n) doing O(n log n) operations.

Evident, if distribution into buckets is balanced.

Sample sort: applied to distributed memory

Each processor i

- Selects 5 In n random pivots
- Sends its pivots to all others
 - » In MPI: an allgatherv operation
- Sorts the pivots in parallel
- Chooses positions 5kln n+1, for k=1,...,p-1 as pivots
- Divides the local n/p elements into p buckets B_{i1},...,B_{ip}
- Sends bucket B_{ij} to processor j
 - » In MPI: an alltoall operation
- Sorts the local elements (buckets B_{1i},...,B_{pi})

Sample sort: Analysis

Theorem:

With high probability, sample sort terminates in time O(n log n/p) and uses communication time O(p ln n + n/p), for $p^2 \le n/(6 \ln n)$

The key is doing the communication efficiently

