9. Parallel sorting

* Overview

* Sequential sorting algorithms
* Merging and sorting networks
* Odd-even sorting

* Parallel sample sort
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Sequential sorting algorithms

* Mergesort
— Sort recursively and merge two sorted sequences
* Quicksort
— Partition at some pivot, and sort recursively: O(n log n)
* Radix sort
— Sort stably from LSB to MSB
* Insertion sort, Bubble sort, Macaroni sort, ...

* Remember
— Comparison-based sorting needs Q(n logn ) steps
— If we can use additional information on the input, we can do it in O(n)
— We will look at comparison-based sorting here
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Example: Bubblesort

Bubblesort(A) :=
// let A be (a, ..., a)

for i in 1..n
for j in i+l..n
if (a, > a)

swap(a; ,, a,)
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Example: Quicksort

Quicksort(A) :=
if length(A)
return A

(Al,A2) := Partition(A)
return Quicksort(Al) + Quicksort(A2)

1 then

Partition(A) :=
choose some pivot p
return
({ainA]|Ja<=p}, {ain A | a>p })
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Example: Mergesort

Mergesort(A) :=
// Let A = (a, ..., a)
if n=1
return A
m := floor(n/2)
Al := MergeSort( (a,, ..., a) )
A2 := MergeSort( (a ., a) )
Merge(Al,A2)

m+17
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Sorting networks

* Given the importance of sorting, we could try to build it in HW

— This leads to sorting networks
— Basic element: compare-and-exchange (CX)

* Examples

— min(a,b) | I ] B
— max(a,b)

.
' CX
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Sorting network

How do we compare networks?

A sorting network is a DAG, with three kinds of vertices
— n inputs, of in-degree 0, out-degree 1
— n outputs of in-degree 1, out-degree 1
— gates of in- and out-degree 2 (our comparators)
The depth of
— inputsis 0

— any gate is 1 + maximum depth of its predecessors
— outputs is the depth of its predecessors

The depth of a network is the maximum depth over its outputs
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Sorting network

* Implementation of Bubble sort
— First inner loop can be done with n-1 comparators
— After that, we sort the remaining n-1 elements

« Cost: O(n?) comparators, time O(n)
* Can we do better?
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Sorting networks

* We implement merging
— Assumption: We want to sort 2" elements
— Start merging sequences of single elements (which are sorted)
— Merge resulting sequences of 2,4,8,... elements up to 2"

* Merging a small number of elements

M - —
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Sorting networks

* For larger n: we d,
merge recursively a, —— <
a2
— the odd elements — 5
ofaand b M “
— the even elements 5 I
ofaandb a — .
* and sort the output .
6
b “
b
2
Mn —
1 C2n-2
C2n-1
bz_l C2n
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Sorting networks

Why does this work?
Look at element d.

— There are at least i-1 odd and i-2 even smaller elements
— There are at least n-i odd and n-i+1 even larger elements
— So the final position is 2i-2 or 2i-1

Look at element e,

— There are at least i-1 even and i odd smaller elements
— There are at least n-i even and n-i-1 odd larger elements
— So the final position is 2i or 2i+1

In summary, we know
— d, is the smallest and e is the largest element

— Every pair d,e ., for 2 <= i <= n compete for positions 2i-2 and 2i-1
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Sorting networks

What does this cost?

Number of comparators
— ¢(2n) = 2¢(n) + n-1
— This has solution ¢(n)=0O(log n)

Time

— t(2n)=t(n)+1

— This has solution t(n)=O(log n)
Work

— w(n)=c(n) t(n) =O(n log n log n)
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Sorting networks

* Finally, we can sort: this is called odd-even Mergesort (Batcher 68)

* Combinek =0, ..., log n -1 stages of mergers
— Stage k merges 2" pairs of lists of size 2*

* Final costs
— Number of comparators O(n log? n)
— Time O(log? n), Work O(n log* n)

* Discussion

— Excellent speed up, but high humber of comparators (more than
elements!)

— Irregular architecture: not feasible to implement for large n

* Observations
— Networks with time O(log n) and O(n log n) comparators exist

i |
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Parallel sort

* Another try at Bubble sort, this time in SW
— We assume we have n processors, each “owning” an element
— Then, in each phase

» The odd processors execute compare-and-exchange with their
right neighbors

» Then the even processors do the same
— In floor(n/2) phases the sequence is sorted
* Cost?
— Work is O(n?): not work-optimal
— Time is O(n): just a log n speedup over Quicksort
* Same as above
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Parallel Bubblesort

Can we do better?

Idea: Use lesser processors, group the items
— On p processors, each one works in n/p items
— Each one locally sorts at start
— Then each processor does the same as before, but blockwise
— We have now O(p) phases

Cost nhow?
— Work: O(p (n/p) log n/p) + O(p p n/p) = O(n log n) + O(p n)
— Time: O(n/p log n) + O(n)
— Communication: O(n)

This is optimal for p <log n
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Sorting by sampling

* Another idea: extend Quicksort

— Divide input into p partitions

— Each processors sorts one partition in parallel

— We assume that each processor has n/p elements at start
* Problems

— How to partition the data evenly?

— How to communicate the data afterwards?

* A randomized solution: Sample sort
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Sample sort: Basic idea

« Draw in parallel a set of k=sqrt(n) random samples S yeensS,

— These will be our pivots
— Let s be -infinity, s, __ be infinity

* Rearrange all elements in parallel into sqrt(n)+1 buckets
— Bucket i contains elements in the interval s _,...,s.

* Sort each bucket in parallel recursively

Theorem (Jaja):

With high probability this terminates in time O(log n) doing O(n log n)
operations.

Evident, if distribution into buckets is balanced.
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Sample sort: applied to distributed memory

* Each processor i

— Selects 5 In n random pivots

— Sends its pivots to all others

» |n MPI: an allgatherv operation

— Sorts the pivots in parallel

— Chooses positions 5kin n+1, for k=1,...,p-1 as pivots

— Divides the local n/p elements into p buckets B, ....,B,|
— Sends bucket B, to processor |

» In MPI: an alltoall operation

— Sorts the local elements (buckets B,...,B )
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Sample sort: Analysis

Theorem:

With high probability, sample sort terminates in time O(n log n/p) and
uses communication time O(p In n + n/p), for p2 <= n/(6 In n)

The key is doing the communication efficiently
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