
16/10/2008

1

Parallele Programmierung 1
Nicolas Maillard, Marcus Ritt

A few parallel algorithms
with communication

Parallele Programmierung 2
Nicolas Maillard, Marcus Ritt

A simplified LogP model

• Let us assume now that:

– A parallel program is run by p distinct and equal processo rs,
each one with its own private memory;

– The time to communicate n Bytes between 2 processors is
modeled as:

Tcom (n) = L + n/g

1. L is a latency (in sec.),

2. 1/g (in B/sec) is the throughput (g is the “gap” between
the transmission of 2 Bytes).

• This model is homegeneous, static and symetric.
– All the processors are supposed to be equal,

– Their number does not change during the computation,

– A communication does not privelegiate the sender or the
receiver.

Parallele Programmierung 3
Nicolas Maillard, Marcus Ritt

Granularity and Distribution

• Having a notion of “remote memory” vs. “local memory”
enables to define two notions:

1. The granularity of a parallel program is the ratio “number of
instructions” / “volume of communication”;

» Or better, the ratio “CPU time” / “Communication time”

» A program is called “fine-grained” or “coarse-grained”
depending of its granularity.

2. The way the data have to be distributed between the
processors, in order to minimize the communication.

» A processor can only compute with data in its local
memory.

• Notice that in practive you may have overlap between
computation and communication.

Parallele Programmierung 4
Nicolas Maillard, Marcus Ritt

Revisiting the matrix product

• 1st hypothesis: M and N are both copied in the memory o f all the p
processors.

– It is reasonable to want to have

´res´ also copied.

– Each processor can compute roughly n 2/p coefficients of ‘res’.

» since each one of these computations takes time θ(n), the total
computing time is θ(n3/p) (by processor).

– But then, each processor must send its coefficients to al l the other.

» By processor, this means p-1 messages of size n 2/p, i.e. T com (n) =
(p-1)(L + n 2/pg)

» The good point is that each message is “big” (good for laten cy).

– Grain: approx. : g.n 3 / (p-1)n 2 =± g.n /p

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x=

Mres N

Parallele Programmierung 5
Nicolas Maillard, Marcus Ritt

With distributed matrices

• 2nd hypothesis: M and N are distributed, and ‘res’ sh ould
be distributed.

– M is distributed by lines,

– N is distributed by columns,

– Res is distributed by lines.

• Each process must compute n/p lines, i.e. n 2/p coefficients
of res.

– This means again θ(n3/p) op. by processor

– The problem is that a given proc needs (p-1) x (n/p) colu mns
that it does not own.

– i.e., by proc, T com (n) = (1-1/p)n(L+n/g).

• Grain: approx. : g.n 3 / n2 =± g.n

– Same thing as previous, not that good for Latency, bette r for
throughput.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x=

Mres N

Parallele Programmierung 6
Nicolas Maillard, Marcus Ritt

With block-distributed matrices

• 3rd hypothesis: M and N are distributed, and ‘res’ sh ould be
distributed.

– M, N and res are distributed by blocks of size KxK elements.

– pK 2 = n2 , i.e. K = n / √p

• Each process must compute K 2 = n2/p coefficients of res.

– This still means θ(n3/p) op. by processor

• Then, each processor needs to receive:

– (n/K-1) K 2 coefs from lines = √p x (L+n 2/gp) = approx n 2/ g√p

– (n/K-1) K 2 coefs from columns = approx n 2/ g√p

– i.e., by proc, T com (n) = 2 n2/ g√p.

• Grain: approx. : g.n 3 / √pn2 =± g.n / √p

– Good for latency, and much better than previous results.

16/10/2008

2

Parallele Programmierung 7
Nicolas Maillard, Marcus Ritt

System of linear equations

• Coming back to the LU original (non D&C) factorization. ..

• How do we distribute the computations?
– Distribute M by columns,

– Each processor only computes the coefficients

of its own columns.

– Let us note rank(k) the rank of the processor which owns
column k.

for (k = 0 ; k <= n-2; k++) {
for (i = k+1 ; i <= n-1 ; i++)

M[i][k] = -M[i][k] / M[k][k];
for (j = k+1; j <= n-1; j++)

for (i=k+1 ; i<=n-1; i++)
M[i][j] = M[i][j] + M[i][k]*M[k][j];

}
Factored

Being
updated

Parallele Programmierung 8
Nicolas Maillard, Marcus Ritt

The parallel algorithm (1)

• Writing in a SPMD way (all the processors run this same
code):

r = my_proc_rank()
p = number_of_procs()
for (k = 0 ; k <= n-2; k++) {

if (r == rank(k)) then
for (i = k+1 ; i <= n-1 ; i++)

M[i][k] = -M[i][k] / M[k][k];
}
/* each processor owns only part of the M[i][k] */
for (j = k+1; j <= n-1; j++)

for (i=k+1 ; i<=n-1; i++)
M[i][j] = M[i][j] + M[i][k]*M[k][j];

}

Parallele Programmierung 9
Nicolas Maillard, Marcus Ritt

The parallel algorithm (1)

• Writing in a SPMD way (all the processors run this same
code):

r = my_proc_rank()
p = number_of_procs()
for (k = 0 ; k <= n-2; k++) {

if (r == rank(k)) then
for (i = k+1 ; i <= n-1 ; i++)

M[i][k] = -M[i][k] / M[k][k];
}
/* each processor owns only part of the M[i][k] */
for (j = k+1; j <= n-1; j++)

for (i=k+1 ; i<=n-1; i++)
M[i][j] = M[i][j] + M[i][k]*M[k][j];

}

Small problem here:
The matrix is
distributed,
so j and k should
not run
from 0 to n-1

Parallele Programmierung 10
Nicolas Maillard, Marcus Ritt

The parallel algorithm (2)

• Using a “local index” l (=0...n/p) for the columns:
r = my_proc_rank()
p = number_of_procs()
l=0
for (k = 0 ; k <= n-2; k++) {

if (r == rank(k)) then
for (i = k+1 ; i <= n-1 ; i++)

M[i][l] = -M[i][l] / M[k][l];
l= l+1

}
/* each processor owns only part of the M[i][k] */
for (j = l ; j <= n/p-l ; j++)

for (i=k+1 ; i<=n-1; i++)
M[i][j] = M[i][j] + M[i][k]*M[k][j];

}

Parallele Programmierung 11
Nicolas Maillard, Marcus Ritt

Two more “implementation” details

• You need to broadcast the elements M[i][l] in the middle of the
algorithm.

– This means sending n 2/p coefficients to all the p-1 other processors.

– Takes time (p-1)(L+ n 2/gp).

» Note: this is a worst case scenario – a broadcast can (s hould) be
better implemented.

» It could take something like (L+ n 2/gp)log(p).

• Probably, this broadcast needs to access contiguous elements in
the local memory.

– This means that the M[i][l] coefs. probably should be stor ed in column-
major order (Fortran order)

– Else (in C), you have to use an intermediate buffer.

– This is typical of MPI + C programming.

Parallele Programmierung 12
Nicolas Maillard, Marcus Ritt

So what is the “rank()” function?

• Rank(k) = rank of the processor that owns the column k.

• There are many options:

– Block mapping: let B = n/p, then rank(k) = k / B

» / is the euclidean division.

» With this formula, the last processor gets a little bit mo re

elements than the other.

» Very simple to implement, and maximizes locality.

– Cyclic (round-robin) mapping: rank(k) = k % p

» Simple to implement, minimizes locality

» Good for load balancing.

– Block cyclic : given a block size n/p ≥ B ≥1, rank(k) = (k / B) % p

» The best of two worlds.

16/10/2008

3

Parallele Programmierung 13
Nicolas Maillard, Marcus Ritt

Parallel complexity of LU

• Each processor performs (roughly):

– n2/2p divisions in the first phase (pivot computation)

» Actually, they are products.

– Broadcast: (L+ n 2/gp)log(p).

– n3/3p products

in the update phase.

• Total runtime:

– (n2/2p + n3/3p)T* + (L+ n2/gp)log(p).

– Granularity: roughly

gn/3log(p)

• This is not that bad (compare to the matrix products).

– But the parallel runtime is far from ideal.

for (k = 0 ; k <= n-2; k++) {
if (r == rank(k)) then

for (i = k+1 ; i <= n-1 ; i++)
M[i][k] = -M[i][k] / M[k][k];

}
/* brodcast */
for (j = k+1; j <= n-1; j++)

for (i=k+1 ; i<=n-1; i++)
M[i][j] = M[i][j] + M[i][k]*M[k][j];

}

Parallele Programmierung 14
Nicolas Maillard, Marcus Ritt

Solving a System of Differential Equations

• You want to simulate:

– The heat diffusion in a metallic bar,

– The behavior of a fluid flow when it meets an obstacle,

– The diffusion of polluents in a river,

– The stock-exchange (bad example toda...)

• Then you need to solve things like:

(Wikipedia)

Parallele Programmierung 15
Nicolas Maillard, Marcus Ritt

How do you do it?

• These equations apply mathematical

operators to 3D points.

– E.g.: temperature(x,y,z).

• In order to solve them by approximation, the 3D spatial
domain is discretized by a mesh .

– The continuous operators turn to matricial operators.

You then have to iteratively apply these
operators to compute the values for each
vertex

• (this means matrix-vector products)
• Hopefully this converges.

Parallele Programmierung 16
Nicolas Maillard, Marcus Ritt

Example of output – fluid in a chanel

• A fluid flows in a square channel,

• There is an obstacle in the middle.

• How does it impact on the velocity/

pression of the fluid?

(All the study in SCHEPKE et al.,
Performance Improvement of the Parallel
Lattice Boltzmann Method. SBAC´07)

Parallele Programmierung 17
Nicolas Maillard, Marcus Ritt

Example of output – fluid in a chanel

Parallele Programmierung 18
Nicolas Maillard, Marcus Ritt

Domain decomposition (1)

• So you end up with a mesh that you have to distribute.

• How do you distribute it?
– If it is “regular” (structured), e.g. with rectangles or triangles,

all with the same size, it is more or less like the matrices .

– If it is unstructured (like the examples above), then it is much
more difficult

» Graph partitioning techniques.

16/10/2008

4

Parallele Programmierung 19
Nicolas Maillard, Marcus Ritt

Domain decomposition (2)

• Anyway, you end up with a distributed data-structure (usu ally a d-
dimensional array), with:

– N internal vertices,

– D peripherical vertices.

• The parallel computation will consist in an iterative proc ess. At
each iteration:

– Each processor applies its (discretized) operator on the N internal
points;

– Each processor sends to those which own the neighboor domai ns the
values of the points that lie on the frontier.

» And receives from its neighbors their values.

– Each processor updates its frontier with these new receive d values.

» Either overwrite them, either uses a mean...

Parallele Programmierung 20
Nicolas Maillard, Marcus Ritt

Frontier

• The notion of frontier is crucial:
– The more overlap between the frontiers, more continuous the solution

will be.

» The convergence will be faster, less risks of diverging.

» There are numerical results that prove this.

– The more overlap there is, more duplicated computation t here is.

» Time lost.

• From the parallel point of view, the communication is
directly conditionned by the size of the frontiers

– Granularity is roughly NT * / 2(L+ D/g).

– So you want small frontiers.

• What is best?

– A more parallel algorithm, which performs more iterati ons to
converge?

– A less parallel algorithm, which performs less iteration s?

Parallele Programmierung 21
Nicolas Maillard, Marcus Ritt

Example: a “square” case

• The domain is a cube, containing N 3 points .

• Divide it following one dimension in p slices

– You have N 3/p points by domain.

– D is proportional to N 2

• Divide it following 2 dimensions in p “sticks”
– You still have N 3/p points by domain

– D is proportional to 4 N 2 / √ p

• Divide it following 3 dimensions in p “small cubes”

– You still have N 3/p points by domain

– D is proportional to 6 N 2 / p2/3

• The 3D solution is better!

– But you need more technical manipulations of the
communication!

Parallele Programmierung 22
Nicolas Maillard, Marcus Ritt

Performance analysis [Schepke´07]

• Back to the fluid dynamics.

– The 3D blocks win

– They have a linear speedup.

– But you can see the distance from optimum.

Parallele Programmierung 23
Nicolas Maillard, Marcus Ritt

Conclusion

• Taking communication into account leads to other
preocupations:

– Granularity,

– Interleaving comm with computation.

• This is good, but is highly specific to each application and
architecture

– You have to measure L, g, etc.

– You lose the “big picture”.

• You end up having to think about the implementation...

– See the Broadcast in the LU factorization.

• Talking about implementation... This is the subject of ne xt
lecture!

– Message Passing Interface (MPI).

