
16/10/2008

1

Parallele Programmierung 1
Nicolas Maillard, Marcus Ritt

PRAM Algorithms

Parallele Programmierung 2
Nicolas Maillard, Marcus Ritt

Today´s menu

1. What do you program?

– Parallel complexity and algorithms

2. The PRAM Model

– Definition

– Metrics and notations

– Brent´s principle

– A few simple algorithms & concepts

» Parallel sum and granularity control,

» Prefix computation and Divide & Conquer,

» Addition of two n-bits integers and Redundancy

Parallele Programmierung 3
Nicolas Maillard, Marcus Ritt

What do you program?

• “ Complexity ” = metrics to evaluate the quality of
your program.

• It depends on:
– The model of the algorithm and of the program:

» Data, computation, memory usage, for instance.

– The model of the host machine:
» Processor(s), memory hierarchy, network...?

• In the sequential case, everything´s fine!
– Von Neumann model – fetch & run cycles.

– Turing machine.. .

– A very SIMPLE model enables the correct prediction and
categorization of any algorithm.

Parallele Programmierung 4
Nicolas Maillard, Marcus Ritt

What do you expect from a model?

• A model has to be:

– extensive:

» Many parameters – in general, it ends up in a complx
system.

» These parameters reflect the program/machine.

– Abstract

» i.e. generic

» You do not want to change your model each 18 months
(see Morore´s law)

» You want the general trend, not the details.

– Predictive

» So it must lead to something you can calculate on.

» (It does not mean that it must be analytical)

Parallele Programmierung 5
Nicolas Maillard, Marcus Ritt

In the parallel world...

• There is no universal model. ����

• There are many models
– For each type of machine, and many types of programs.

• You have no simple “reduction” from a model for distribu ted
memory machine to a model for shared memory machine.

– Because of the network model...

• Most theoretical models have been obtained with shared
memory models .

– Much simples, less parameters.

– Scalability limited !

Parallele Programmierung 6
Nicolas Maillard, Marcus Ritt

Basic ideas for the machine model

• Disconsider the communication (PRAM)
– Adapted for shared memory machines, multicore chips...

• Consider a machine as being homegeneous,
static, perfectly interconnected, with zero latency,
and a fixed time for message passing (delay
model).

• Consider a homogeneous, static machine, with a
network that has latency and/or a given bandwith
(LogP)

– Okay for a cluster

• Considerar a dynamic, heterogeneous machine
(Grid)...

– No one knows hot to model this.

16/10/2008

2

Parallele Programmierung 7
Nicolas Maillard, Marcus Ritt

Parallel program model

• How do you describe a parallel program?

• Task parallelism:
– The program is made of tasks (sequential unit);

– The tasks are (partially) ordered by dependencies

– A correct execution if a (possibly parallel) schedule wh ich
respects the dependencies.

– Very close to functionnal programming.

• The dependencies can be explicit (e.g.: depend on
messages) or implicit (e.g.: arguments).

• Trivial case: no dependencies (“embarassingly paralle l”
(EP), “parameter sweeping”, “task farm”, “master/slav e”,
“client/server”, “bag of tasks”,...

• More complex case: Divide & Conquer.
– The dependencies order the tasks in a tree-like way.

Parallele Programmierung 8
Nicolas Maillard, Marcus Ritt

Parallel program model

• Data Parallelism
– Distribute the data, and each process/thread computes

on its local data.

» Owner Compute Rule

– Single Program Multiple Data

• Loop parallelism
– Comes from the Compiler world

– Just tell which iterations of a loop can be performed in
parallel.

• Templates for parallel programming

– Provides skeletons (frameworks).

Parallele Programmierung 9
Nicolas Maillard, Marcus Ritt

Satin
OpenMP

Programming Model vs. Machine Model

Machine model

P
ro

gr
am

in
g

m
od

el

Dist.
memory

shared
memory

Threads

Communicating
processes

RMI/RPC

PVM/MPI

CilkPosix Threads

Java

Parallele Programmierung 10
Nicolas Maillard, Marcus Ritt

Performance evaluation

• A parallel program is intrinsically non-deterministic

– The order of execution of the tass may change from execution
to execution

– The network (if any) adds its part of random.

• You are interested in runtime.

– The usual argument “I compiled it, therefore the program is
okay” does not serve at all!

• It is mandatory to use statistical measurements :

– At least: x runs (x=10,20, 30...), and mean, min. a nd max.
Runtime (or speedup, or efficiency) indicated.

– Better: x runs, mean and standard deviation

» If the standard dev. is high, run it more – or ask y ourself if
there is something wrong...

– Event better: x runs, confidence interval about the mean.

Parallele Programmierung 11
Nicolas Maillard, Marcus Ritt

The PRAM model

• A PRAM machine is a set of processorS,

– All are equal and only distinguished by an id.

– All can access in constant time whatever address of a glob al,
shared memory .

– The processors execute their instructions synchronously .

– You can use as many processor as you want .

• Metrics: executing a parallel program with entry of size n ,
on a PRAM machine, is characterized by two quantities:

– The parallel runtime Tpar(n)

– The number of processors required to this execution P(n)

• The “quality” of the PRAM execution is also measured by
Wp(n) (Work), the total number of instructions.

– Wp(n) ≤ Tpar(n) * P(n)

Parallele Programmierung 12
Nicolas Maillard, Marcus Ritt

Considerations: time, space and work

• Tpar(n) is the runtime.

– Proportional to the runtime of a single instruction.

– What is important is the order of magnitude :

» O(n), O(log n), O(nlog n), θ(n)...

• P(n) is the number of processors.

– In the PRAM model, 1 processor = 1 process.

– P(n) can also be considered as a measure of the (memory)
space that is required.

• C(n) = Tpar(n) x P(n) is the (parallel) cost.

– Look at it as a rectangular area.

• Wp(n) is the Work
– A sub-area of the rectangle.

– As close as possible as the sequential program.
Tpar(n)

P(n)

16/10/2008

3

Parallele Programmierung 13
Nicolas Maillard, Marcus Ritt

Optimal PRAM algorithm

1. Tpar(n) as small as possible

– Maybe you will have to use many processors!

– What is small?

» Tpar(n) = θ(log n)

2. P(n) not too big.
– Polynomial in n.

3. Do not perform (many) more instructions in parallel t han
in sequential.
– i.e. C(n) = θ(Wp(n)) = θ(W1(n)) = θ(T1(n))

Parallele Programmierung 14
Nicolas Maillard, Marcus Ritt

Brent´s Principle

• Na optimal PRAM algorithm will usually require P(n)
processors, much more than a fixed, constant number p
that is physically available (“p vs. n”).

• So how do you map a PRAM algorithm to a small number of
processors?

• Easy: just “adjust the rectangle”

– Each physical processor i=1...p sequentially runs

more than one instructions of each PRAM proc.

– Of course, the runtime increases. How much?

• Brent´s principle (emulation): Tpar(n)

P(n)

Tp(n) ≤ + Tpar(n)Wp(n)
p

Parallele Programmierung 15
Nicolas Maillard, Marcus Ritt

Great, but what does it mean?

• Take an optimal PRAM algorithm

– Very parallel , runtime much smaller than seq. and almost as
few instr. as in the sequential case.

– Formally, T par(n) = θ(log n) and W p(n) = θ(T1(n))

• Therefore, you can always run it on a fixed, small numbe r of
processors p, with runtime:

• So, when T 1(n) >> log(n) (which is always the case...), you
end up with an almost linear speedup . Nice!

Tp(n) ≤ + log(n)T1(n)
p

Parallele Programmierung 16
Nicolas Maillard, Marcus Ritt

1st PRAM algorithm: sum of n elements

• Input: an array of n = 2 k elements and an associative, commutative
operator ‘+’.

• Output: the “sum” of the n elements.

• T1(n) = n-1 /* I do hope this is obvious for everyon e... */

• Parallel algorithm: binary tree .

Parallele Programmierung 17
Nicolas Maillard, Marcus Ritt

PRAM complexity of the parallel sum

1. Tpar(n) = θ(log n)

– Good.

2. P(n) = n/2
– That is a “small” polynomial in n. Good.

3. W(n) = n/2 + n/4 + n/8 + ... = n-1
– = T1(n), great.

4. So what´s wrong ?

– C(n) = P(n) * T par(n) = θ(n.log n) >> θ(T1(n))

– In plain English: the P(n) processors are under-used. The
algorithm is inefficient.

Parallele Programmierung 18
Nicolas Maillard, Marcus Ritt

The optimal parallel sum algorithm

• The problem comes from a very fine-grained algorithm.
– The basic operation is a single + operation.

• Other version of the (same) problem: we use a little bit more
processors than what we want.

– If we could use P(n) = n/log(n), with T par(n) = θ(log n), then the
algorithm would be optimal.

• Solution: increase the granularity, or (same thing) use Brent´s
principle.

– Take p = n/log(n) processors, each one running more than one of the
basic + instructions of previous algorithm.

– Each processor will run log(n) ‘+’ instructions.

• This idea can also be seen as a sequential “degeneration” of the
parallel algorithm.

– To be efficient in parallel, run in sequential !

– A similar technique is used in sequential algorithmics (see quicksort)

16/10/2008

4

Parallele Programmierung 19
Nicolas Maillard, Marcus Ritt

The optimal parallel sum algorithm

Sequential
phase

Parallel
phase

Parallele Programmierung 20
Nicolas Maillard, Marcus Ritt

Parallel Prefix

• Input: an array of n = 2 k elements and an associative,
commutative operator ‘+’.

• Output: the n “partial sums” of the i first elements, i=1..n.

• T1(n) = n-1 /* I do hope this is obvious for everyon e... */

• This seems highly sequential !

• Let us revisit the computation, using Divide & Conquer

– This is an IMPORTANT (although simple) concept.

result[1] = a[1] /* the 1st element of the input array */
for (i=2 ; i <= n ; i++)

result[i] = result[i-1] + a[i]

Parallele Programmierung 21
Nicolas Maillard, Marcus Ritt

Prefix – the D&C version

a1 an/2 an/2+1 an

prefix

....

prefix

an/2+1

an/2+1+an/2+2

....

an/2+1++an/2+2 ++...+an

Divide phase

Parallele Programmierung 22
Nicolas Maillard, Marcus Ritt

Divide phase

Prefix – the D&C version

a1 an/2 an/2+1 an

prefix

....

prefix

an/2+1

an/2+1+an/2+2

....

an/2+1++an/2+2 ++...+an

Conquer phase

Parallele Programmierung 23
Nicolas Maillard, Marcus Ritt

PRAM complexity of the D&C parallel prefix

1. Tpar(n) = Tpar(n/2) + 1 = ... = θ(log n)

– Good.

2. P(n) = Max{ 2P(n/2) ; n/2 } = ... = n
– That is a “small” polynomial in n. Good.

3. C(n) = P(n) * Tpar(n) = θ(n.log n) >> θ(T1(n))
– In plain English: the P(n) processors are under-used. The

algorithm is inefficient.

4. “Apply Brent” – or increase the granularity – and you will
get an optimal version.

– Tpar(n) = θ(log n), P(n) = n/log(n).

Parallele Programmierung 24
Nicolas Maillard, Marcus Ritt

Sum of two n-bits numbers.

• Input: 2 binary numbers a and b of n = 2 k bits.

• Output: the n+1 bits number equal to a+b .

• T1(n) = n, with the algorithm that is learned at elementary school
(sum the digits column by column, from right to left, with the
carry).

Simple and nice, but highly sequential again!
– You have to propagate the carry from right to left, and can not

compute the i-th bit without the carry.

an-1 a0

+ bn-1 b0

= rn r0

Carry ci = 0 or 1, depending on ri-1

ri-1 =bi-1+bi-1

16/10/2008

5

Parallele Programmierung 25
Nicolas Maillard, Marcus Ritt

D&C sum of two binary numbers

an-1

a0

+ bn-1

b0

= rn

r0

Carry cn/2 = 0 or 1, depending on rn/2-1

n/2 heavy weight bits n/2 lightweight bits

rn/2-1

rn/2

Ok... You divide the computation in 2
halves... The “conquer” phase is trivial...

BUT YOU STILL HAVE SEQUENTIAL
DEPENDENCY!

Time

Parallele Programmierung 26
Nicolas Maillard, Marcus Ritt

D&C sum with redundancy

Carry cn/2 = 0 or 1,
depending on rn/2-1

n/2 heavy weight bits, 2 parallel computations

a0

b0

r0

n/2 lightweight bits

rn/2-1

an-1

+ bn-1

= rn rn/2

Time

an-1

+ bn-1

= rn rn/2

+cn/2 = 0 +cn/2 = 1

cn/2 == 0 ?
YES

NO

Heavy bits of r
are here

Heavy bits of r
are here

Parallele Programmierung 27
Nicolas Maillard, Marcus Ritt

PRAM complexity of D&C sum with redundancy

1. Tpar(n) = Tpar(n/2) + 1 = ... = θ(log n)

– Good.

2. P(n) = Max{ 3P(n/2) ; 1 } = ... = θ(n log
2
(3)) = θ(n1.58)

– That is a “small” polynomial in n. Good.

3. C(n) = P(n) * Tpar(n) = θ(n1.58.log n) >> θ(T1(n))
– In plain English: the P(n) processors are under-used. The

algorithm is inefficient.

4. The optimal algorithm is not obvious to obtain!

Parallele Programmierung 28
Nicolas Maillard, Marcus Ritt

Conclusion about PRAM

• A simple, but powerful model
– Quantifies the runtime and the processor number.

– Evaluates the parallel number of operations.

– Provides complexity classes (NC).

• An unrealistic model?
– Use as many processors as you want

» This is an aproximation – “Brent resolves the problem”.

– Homogeneous architecture

» Ok...

– Uniform time for all the memory accesses

» This is a real problem! What if there is some network a ctivity in
some place?

• Some say that the new area of shamred-memory systems
(multicore) give a new force to PRAM.

