PRAM study of Linear Algebra Algorithms

Basic Linear Operations

- Scalar product: 2 input vectors x, y of size n.
res := 0
for ($\mathrm{i}=1$; $\mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
res $=r e s+x[i]$ * $y[i]$

PRAM study of Linear Algebra Algorithms			

So how do you do this in parallel?

- Scalar product
- Actually, it is a simple application of the sum of \mathbf{n} elements!
$-T_{\text {par }}(n)=\theta(\log n), P(n)=n / \log n$. Optimal.
- Matrix x Vector
- The algorithm is trivially parallel: just compute the n components of 'res' in parallel.
" Each one is a scalar product!
$-T_{\text {par }}(n)=\theta(\log n), P(n)=n^{2} / \log n$. Optimal.
- Matrix x Vector
- The algorithm is trivially parallel: just compute the n^{2} components of 'res' in parallel.
" Each one is a scalar product!
$-T_{p a r}(n)=\theta(\log n), P(n)=n^{3} / \log n$. Optimal.

Small (and fun) sequential observation

Matrix - Vector product
res[:] = 0
for $(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
for ($\mathrm{j}=1$; $\mathrm{j}<=\mathrm{n} ; \mathrm{j}++$)
$\operatorname{res}[i]=\operatorname{res}[i]+M[i][j]$ * $y[j]$
Matrix - Matrix product

res[:][:]:= 0
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
for ($\mathrm{j}=1$; $\mathrm{j}<=\mathrm{n} ; \mathrm{j}++$)
for ($k=1 ; k<=n ; k++$)
Parallele Programmierung
Nicolas Maillard Marcus Bit

T Parallele Programmierung
Picolas Maillard Marcur Rit

Solving a system of linear equations

- You want to solve $\mathbf{M x}=\mathbf{y}$, where \mathbf{M} is a $\mathbf{n} \mathbf{x} \mathbf{n}$ matrix.
- And let us suppose that there is a unique solution.

The D\&C algorithm

1. A LU factorization of size $n / 2$ provides L_{11} and U_{11}
2. Then, you have to invert $2 n / 2$ matrixes $\left(U_{11}\right.$ and $\left.L_{11}\right)$
3. Then, with 2 matricial products, you get L_{21} and U_{12}.
4. Then, you can form the new matrix $M_{22}-L_{21} U_{12}$.

- One more matrix product, and a sum (substraction).

5. Finally, one last LU factorization of this matrix yields L_{22} and U_{22}.

- And then you have all L and all U.

PRAM complexity of the triangular inversion

- Then:
$\operatorname{Inv}(n)=\operatorname{Inv}(n / 2)+2 \operatorname{Mul}(n / 2)=\operatorname{Inv}(n / 2)+\log (n)$

$$
\begin{aligned}
= & \ldots=\operatorname{lnv}\left(n / 2^{k}\right)+\log (n)+\log (n / 2)+\ldots+\log \left(n / 2^{k}\right) \\
& =k \log (n)-k(k+1) / 2 \\
& =\theta\left(\log ^{2} n\right), \text { for } k=\log (n) . \\
P_{\text {inv }}(n) & =\max \left\{2 P_{\text {inv }}(n / 2), P_{\text {mul }}(n / 2)\right\} \\
= & \max \left\{2 P_{\text {inv }}(n / 2), n^{3} / \log n\right\}=O\left(n^{3} / \log n\right)
\end{aligned}
$$

- But then,

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{n} / 2}=\mathrm{L}_{11} \times \mathrm{T}_{11} \\
& (0)=\mathrm{L}_{21} \mathrm{~T}_{11}+\mathrm{L}_{22} \mathrm{~T}_{21} \quad \text { i.e. } \quad\left\{\begin{array}{l}
\mathrm{I}_{\mathrm{n} / 2}=\mathrm{L}_{11} \times \mathrm{T}_{11} \\
\mathrm{~T}_{12}=(0) \\
(0)=\mathrm{L}_{11} \mathrm{~T}_{12} \\
\mathrm{I}_{\mathrm{n} / 2}=\mathrm{L}_{22} \times \mathrm{L}_{21} \mathrm{~T}_{12}+\mathrm{L}_{22} \mathrm{~T}_{22} \\
\mathrm{~T}_{21}=-\mathrm{L}_{22}{ }^{-1} \mathrm{~L}_{21}{ }^{-1} \mathrm{~L}_{11}-1
\end{array}\right.
\end{aligned}
$$

Q Parallele Programmierung
Nicolas Maillard Marcus Bitt

Coming back to the LU factorization...

Conclusion about PRAM complexity

```
LU(n)=2LU(n/2) + 2log(n) + 知2}n+
```

 \(\leq 2 L U(n / 2)+3 \log ^{2} n\)
 \(\leq \ldots 2^{k} \operatorname{LU}\left(n / 2^{k}\right)+3 x\left(\sum_{i=0 . k} 2^{i} \log ^{2}\left(n / 2^{i}\right)\right)\) for whatever
 \(\mathrm{k} \leq \log (\mathrm{n})\).
 - Since $\log ^{2}\left(n / 2^{i}\right) \leq \log ^{2} n$, the sum is less than $\log ^{2} n \times \sum_{i=0 . . k} 2^{i}=\left(2^{k+1}-1\right) \log ^{2} n=(2 n-1) \log ^{2} n$, for $k=\log n$
- So, $L U(n)=O\left(n+3 n \log ^{2} n\right)=O\left(n \log ^{2} n\right)$
- Number of processors?

$$
\begin{aligned}
-P_{\mathrm{Lu}}(\mathrm{n}) & =\operatorname{Max}\left\{P_{\mathrm{Lu}}(\mathrm{n} / 2), 2 \mathrm{P}_{\mathrm{inv}}(\mathrm{n} / 2), 2 \mathrm{P}_{\mathrm{mu}}(\mathrm{n} / 2), \mathrm{n}^{2}\right\} \\
& =\operatorname{Max}\left\{\mathrm{P}_{\mathrm{Lu}}(\mathrm{n} / 2), \mathrm{n}^{3} / \log \mathrm{n}, \mathrm{n}^{2}\right\}
\end{aligned}
$$

$$
=O\left(n^{3} / \log n\right)
$$

- Conclusion: $\mathbf{C}(\mathrm{n})=\mathbf{O}\left(\mathrm{n}^{4} \log \mathrm{n}\right)$. The algorithm is not efficient.
- Enables a quantification of how much parallel an algorithm is.
- Scalar product, matrix product is very parallel and efficient.
- LU factorization is accelerated by parallelim, but does not show as much parallelism as other algorithms.
- However, some parameters are not captured by the PRAM model:
- Impact of the distribution of the data on the runtime?
- What if the algorithm really accesses a lot the memory, including nonshared address spaces?
- The next lecture will give some examples to address these limitations.

