
15/10/2008

1

Parallele Programmierung 1
Nicolas Maillard, Marcus Ritt

PRAM study of
Linear Algebra Algorithms

Parallele Programmierung 2
Nicolas Maillard, Marcus Ritt

Basic Linear Operations

• Scalar product: 2 input vectors x,y of size n.

• Matrix – Vector product

• Matrix – Matrix product

res := 0
for (i=1 ; i<=n ; i++)

res = res + x[i] * y[i]

res[:] = 0
for (i=1 ; i<=n ; i++)

for (j=1 ; j<=n ; j++)
res[i] = res[i] + M[i][j] * y[j]

x

.

.

.

.

.

.

.

.

res =

= x

.

.

.

.

.

.

.

.

res
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

x

M y

y

res[:][:] := 0
for (i=1 ; i<=n ; i++)

for (j=1 ; j<=n ; j++)
for (k=1 ; k<=n ; k++)

res[i][j] = res[i][j] + M[i][k] * N[k][j]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x=

Mres N

Parallele Programmierung 3
Nicolas Maillard, Marcus Ritt

Small (and fun) sequential observation

• Without parallelizing the Matrix – Matrix product, you can g ain A LOT OF
runtime by optimization of the 3 loops.

R
un

tim
e

(s
ec

.)

Matrix size (n)
Parallele Programmierung 4
Nicolas Maillard, Marcus Ritt

So how do you do this in parallel?

• Scalar product

– Actually, it is a simple application of the sum of n ele ments!

– Tpar(n) = θ(log n), P(n) = n/log n. Optimal .

• Matrix x Vector
– The algorithm is trivially parallel: just compute the n

components of ‘res’ in parallel.

» Each one is a scalar product!

– Tpar(n) = θ(log n), P(n) = n 2/log n. Optimal .

• Matrix x Vector

– The algorithm is trivially parallel: just compute the n 2

components of ‘res’ in parallel.

» Each one is a scalar product!

– Tpar(n) = θ(log n), P(n) = n 3/log n. Optimal .

Parallele Programmierung 5
Nicolas Maillard, Marcus Ritt

Solving a system of linear equations

• You want to solve Mx = y, where M is a n x n matrix.

– And let us suppose that there is a unique solution.

• Use LU factorization
– By Gaussian elimination, without pivoting.

– In the end, M is LU factorized.

x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

=

for (k = 0 ; k <= n-2; k++) {
for (i = k+1 ; i <= n-1 ; k++)

M[i][k] = M[i][k] / M[k][k];
for (j = k+1; j <= n-1; k++)

for (i=k+1 ; i<=n-1; i++)
M[i][j] = M[i][j] + M[i][k]*M[k][j];

M during the
computation

k-th column
being processed

Factored

Being
updated

Parallele Programmierung 6
Nicolas Maillard, Marcus Ritt

LU factorization by D&C

• You want M = LU. Let us decompose this matrix product by
blocks of size (n/2) x (n/2).

• But then,

M11 = L11U11

M21 = L21U11

M12 = L11U12

M22 = L21U12 + L22U22

(0)

(0)
= x

M11

M21 M22

M12

L21

L11

L22

U11 U12

U22

i.e.

M11 = L11 x U11
L21 = M21 U11

-1

U12 = L11
-1 M12

(M22 - L21U12) = L22U22

15/10/2008

2

Parallele Programmierung 7
Nicolas Maillard, Marcus Ritt

The D&C algorithm

1. A LU factorization of size n/2 provides L11 and U11

2. Then, you have to invert 2 n/2 matrixes (U 11 and L 11)

3. Then, with 2 matricial products, you get L21 and U12.

4. Then, you can form the new matrix M 22 - L21U12 .

– One more matrix product, and a sum (substraction).

5. Finally, one last LU factorization of this matrix yield s L22
and U22.
– And then you have all L and all U.

M11 = L11 x U11
L21 = M21 U11

-1

U12 = L11
-1 M12

(M22 - L21U12) = L22U22

Parallele Programmierung 8
Nicolas Maillard, Marcus Ritt

PRAM Complexity

• Let LU(n) be the parallel runtime (T par(n)) of the LU
factorization of a matrix n x n.

LU(n) = LU(n/2) + Inv(n/2) + Mul(n/2) + Mul(n/2) + 1 + LU(n/2)

= 2 LU(n/2) + 2Mul(n/2) + Inv(n/2) + 1.

• Where:

– Mul(n) = log(n) (with P(n) = n 3/log n processors)

– Inv(n) is the parallel runtime to invert a triangular matrix of size
n.

M11 = L11 x U11

L11
-1 and U 11

-1

L21 and U12

M22 - L21U12

L22 and U22

Parallele Programmierung 9
Nicolas Maillard, Marcus Ritt

Triangular Inversion

• So what is Inv(n)?

• You have L, triangular inferior, and want T such that LT = Id:

• But then,
In/2 = L11 x T11

(0) = L21T11 + L22T21

(0) = L11T12

In/2 = L21T12 + L22T22

(0)
= x

In/2

(0) In/2

(0)

L21

L11

L22

T11 T12

T22T21

i.e.

In/2 = L11 x T11
T12 = (0)
In/2 = L22 x T22
T21 = - L22

-1 L21
-1 L11

-1

Parallele Programmierung 10
Nicolas Maillard, Marcus Ritt

PRAM complexity of the triangular inversion

• Then:

Inv(n) = Inv(n/2) + 2 Mul(n/2) = Inv(n/2) + log(n)

= ... = Inv(n/2 k) + log(n) + log(n/2) + ... + log(n/2 k)

= klog(n) – k(k+1)/2

= θ(log 2 n), for k = log(n).

Pinv (n) = max { 2P inv (n/2), Pmul(n/2) }

= max { 2P inv (n/2), n3/log n} = O(n 3/log n)

• The algorithm if efficient,

but not optimal . In/2 = L11 x T11
T12 = (0)
In/2 = L22 x T22
T21 = - L22

-1 L21
-1 L11

-1

Parallele Programmierung 11
Nicolas Maillard, Marcus Ritt

Coming back to the LU factorization...

LU(n) = 2 LU(n/2) + 2log(n) + log 2 n + 1

≤ 2 LU(n/2) + 3 log 2 n

≤ 2k LU(n/2 k) + 3 x (∑i=0..k 2i log 2 (n / 2 i)) for whatever
k ≤ log(n).

• Since log 2 (n / 2 i) ≤ log 2 n, the sum is less than

log 2 n x ∑i=0..k 2i = (2k+1 – 1)log 2 n = (2n-1) log 2 n, for k = log n

• So, LU(n) = O(n + 3n log 2 n) = O(n log 2 n)

• Number of processors ?

– PLU(n) = Max{ P LU(n/2) , 2 Pinv(n/2), 2Pmul (n/2), n2 }

= Max{PLU(n/2) , n3/log n , n2 }

= O(n3/log n)

• Conclusion: C(n) = O(n4log n). The algorithm is not efficient.

Parallele Programmierung 12
Nicolas Maillard, Marcus Ritt

Conclusion about PRAM complexity

• Enables a quantification of how much parallel an algorithm is.
– Scalar product, matrix product is very parallel and effic ient.

– LU factorization is accelerated by parallelim, but does not show as
much parallelism as other algorithms.

• However, some parameters are not captured by the PRAM mo del:
– Impact of the distribution of the data on the runtime?

– What if the algorithm really accesses a lot the memory, inc luding non-
shared address spaces?

• The next lecture will give some examples to address these
limitations.

