UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA 3
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

$
UFRGS

Technical Report RP-351/
Relatorio de Pesquisa RP-351

January 26, 2005

An Efficient Representation for Surface Details
by
Manuel M. Oliveira and Fabio Policarpo

Instituto de Informatica Paralelo Computagao
UFRGS

+ i [nformatica
LUFRGE

UFRGS-II-PPGCC

Caixa Postal 15064 - CEP 91501-970
Porto Alegre RS BRASIL

Telefone: +55 (51)3316-6155

Fax: +55 (51) 3336-5576

Email: pgec@inf.ufrgs

An Efficient Representation for Surface Details

Manuel M. Oliveira*
UFRGS

Abstract

This paper describes an efficient representation for real-time map-
ping and rendering of surface details onto arbitrary polygonal mod-
els. The surface details are informed as depth maps, leading to a
technique with very low memory requirements and not involving
any changes of the model’s original geometry (i.e., no vertices are
created or displaced). The algorithm is performed in image space
and can be efficiently implemented on current GPUs, allowing ex-
treme close-ups of both the surfaces and their silhouettes. The
mapped details exhibit correct self-occlusions, shadows and inter-
penetrations. In the proposed approach, each vertex of the polygo-
nal model is enhanced with two coefficients representing a quadric
surface that locally approximates the object’s geometry at the ver-
tex. Such coefficients are computed during a pre-processing stage
using a least-squares fitting algorithm and are interpolated during
rasterization. Thus, each fragment contributes a quadric surface
for a piecewise-quadric object-representation that is used to pro-
duce correct renderings of geometrically-detailed surfaces and sil-
houettes. The proposed technique contributes an effective solution
for using graphics hardware for image-based rendering.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: surface details, silhouette rendering, image-based ren-
dering, relief mapping, quadric surfaces, real-time rendering.

1 Introduction

The ability to add details to object surfaces can significantly im-
prove the realism of rendered images, and efforts along those lines
have a long history in computer graphics. The pioneer works of
Blinn on bump mapping [Blinn 1978], and Cook, on displacement
mapping [Cook 1984], have inspired the appearance of several tech-
niques during the past two decades [Max 1988; Heidrich et al.
2000; Oliveira et al. 2000]. While bump mapping can produce very
impressive results at relatively low computational cost, it relies on
shading effects only and, therefore, cannot handle self-occlusions,
shadows, interpenetrations, and simulated details at the object’s sil-
houette. All these features are naturally supported by displacement
mapping, which actually changes the underlying object geometry.
However, since it usually involves rendering a large number of
micro-polygons, it is not appropriate for real-time applications.

Several techniques have been proposed to accelerate the render-
ing of displacement maps and to avoid the explicit rendering of

*e-mail:oliveira@inf.ufrgs.br
fe-mail:fabio @paralelo.com.br

Fabio Policarpo’
Paralelo Computacio

Figure 1: Relief Room. The columns, the stone object and the walls
were rendered using the technique described in the paper.

micro-polygons. These techniques are based on ray tracing [Pat-
terson et al. 1991; Pharr and Hanrahan 1996; Heidrich and Sei-
del 1998; Smits et al. 2000], inverse 3D image warping [Schau-
fler and Priglinger 1999], 3D texture mapping [Meyer and Neyret
1998; Kautz and Seidel 2001] and precomputed visibility infor-
mation [Wang et al. 2003; Wang et al. 2004]. The demonstrated
ray-tracing and inverse-warping-based approaches are computa-
tionally intensive and not suitable for real-time applications. The
3D-texture approaches render displacement maps as stacks of 2D
texture-mapped polygons and may introduce objectionable artifacts
in some situations. The precomputed visibility approaches are very
fast but require considerable amount of memory in order to store a
sampled version of a five-dimensional function.

Recently, a new technique called relief mapping has been proposed
for rendering surface details onto arbitrary polygonal models in real
time [Policarpo et al. 2005]. This technique has very low memory
requirements, correctly handles self-occlusions, shadows and inter-
penetrations. Moreover, it supports extreme close-up views of the
object surface. However, like in bump mapping [Blinn 1978], the
object’s silhouette remains unchanged, reducing the amount of re-
alism.

This paper introduces a completely new formulation for relief map-
ping that preserves all the desirable features of the original tech-
nique, while producing correct renderings of objects’ silhouettes. In
this new approach, the object’s surface is locally approximated by a
piecewise-quadric representation at fragment level. These quadrics
are used as reference surfaces for mapping the relief data. Figure 1
shows a scene where the columns, the stone object and the walls

were rendered using the technique described in the paper. Notice
the details on the object’s silhouette. Our approach presents sev-
eral desirable features when compared to other recently proposed
techniques to represent surface details [Wang et al. 2003; Wang
et al. 2004]: it uses a very compact representation, is easy to imple-
ment, supports arbitrary close-up views without introducing notice-
able texture distortions, and supports mip mapping and anisotropic
texture filtering.

The main contributions of this paper include:

e An improved technique for mapping and rendering surface
details onto polygonal models in real time (Section 3). The
approach preserves the benefits of displacement mapping
(i.e., correct self-occlusions, silhouettes, interpenetrations and
shadows), while avoiding the cost of creating and rendering
extra geometry. The technique works in image-space and, al-
though requiring a very limited amount of memory, it supports
extreme close-up views of the mapped surface details;

e New texture-space algorithms for computing the intersection
of a viewing ray with a height field mapped onto a curved
surface (Section 3);

e An effective solution for using graphics hardware for image-
based rendering.

2 Related Work

Looking for ways to accelerate the rendering of surface details,
several researchers have devised techniques that exploit the pro-
grammability of current GPUs. Hirche et al. [Hirche et al. 2004]
extrude a tetrahedral mesh from the object’s polygonal surface and
use a ray casting strategy to intersect the displaced surfaces inside
the tetrahedra. Comparing to the original model, this approach sig-
nificantly increases the number of primitives that need to be trans-
formed and rendered. The authors report achieving some inter-
active, but not real-time frame rates with the implementation of
their technique. Moule and McCool [Moule and McCool 2002]
and Doggett and Hirche [Doggett and Hirche 2000] proposed ap-
proaches for rendering displacement maps based on adaptive tes-
sellation of the original mesh.

Wang et al. [Wang et al. 2003] store pre-computed distances from
each displaced point along many sampling viewing directions, re-
sulting in a five-dimensional function that can be queried during
rendering time. Due to their large sizes, these datasets need to be
compressed before they can be stored in the graphics card memory.
The approach is suitable for real-time rendering using a GPU and
can produce nice results. However, this technique introduces signif-
icant texture distortions and can only be applied to closed surfaces.
Due to the pre-computed resolution, they should not be used for
close-up renderings. The large sizes of these representations tend
to restrict the number of these datasets used for the rendering of a
given object.

In order to reduce texture distortions and handle surfaces with
boundaries, Wang et al. [Wang et al. 2004] introduced another five-
dimensional representation capable of rendering non-height-field
structures. Since these representations also result in large databases,
they too are more appropriate for tiling and renderings from a cer-
tain distance.

2.1 Relief Mapping

The technique presented in this paper builds upon some previous
work on a technique called relief mapping [Policarpo et al. 2005]
and this section provides a quick review of its main concepts. Re-
lief mapping exploits the programmability of modern GPUs to im-
plement an inverse (i.e., pixel-driven) and more general solution to
relief texture mapping [Oliveira et al. 2000].

All the necessary information for adding surface details to polyg-
onal surfaces is encoded in regular RGB« textures. Since it uses
per-pixel shading, there is no need to store pre-shaded diffuse tex-
tures as in [Oliveira et al. 2000]. Instead, the RGB channels of a
texture are used to encode a normal map, while its alpha channel
stores quantized depth information. The resulting representation
can be used with any color texture. Figure 2 shows an example of a
relief texture mapped onto the teapot shown in Figure 4 (right).

Figure 2: Relief texture represented as a 32-bit-per-texel RGBo
texture. The normal data (left) are encoded in the RGB channels,
while the depth (right) is stored in the alpha channel.

A relief texture is mapped to a polygonal model using texture co-
ordinates in the conventional way. Thus, the same mapping can be
used both for relief and color textures. The depth data is normal-
ized to the [0, 1] range, and the implied height-field surface can be
defined as the function 4 : [0, 1]x[0,1] — [0, 1]. Thus, let f be a frag-
ment with texture coordinates (s,#). A ray-intersection procedure is
performed against the depth map in texture space (Figure 3) and can
be described as follows:

e First, the viewing direction is obtained as the vector from the
viewpoint to f’s position in 3D (on the polygonal surface).
The viewing direction is then transformed to f’s tangent space
and referred to as the viewing ray. The viewing ray enters the
height field’s bounding box BB at f’s texture coordinates (s, 7)
(Figure 3 (left));

e Let (u,v) be the coordinates where the viewing ray leaves BB.
Such coordinates are obtained from (s,7) and from the ray di-
rection. The actual search for the intersection is performed in
2D (Figure 3 (right)). Starting at coordinates (s,7), the texture
is sampled along the line towards (u,v) until one finds a depth
value smaller than the current depth along the viewing ray, or
we reach (u,v);

e The coordinates of the intersection point are refined using a
binary search, and then used to sample the normal map and
the color texture.

Since shadow computation is just a visibility problem [Williams
1978], they can be computed in a straightforward way. Given the
position of the first intersection between the viewing ray and the
height-field surface, a shadow ray can be defined (Figure 4 (left)).
Thus, the question of whether a fragment should be lit or in shade
is reduced to checking whether the intersections of both rays with
the height-field surface have the same texture coordinates. Figure 4

A

viewing r:z/

A A/l A
1.00.0 z—/ 1.0

(s,8)

depth range

I £

| W —_—

V)

Figure 3: Ray intersection with a height-field surface (left). The
search is actually performed in 2D, starting at texture coordinates
(s,7) and proceeding until one reaches a depth value smaller than
the current depth along the viewing ray, or until (u,v) is reached
(right).

(right) shows a teapot rendered using relief mapping and exhibiting
per-pixel lighting, shadows and self-occlusions.

%

light source :O—
AN viewing ray

light ray" (s.b)

depth range

0.0 (@ ?J

Figure 4: Shadow computation. One needs to decide if the light ray
intersects the height-field surface before the point where the view-
ing ray first hits the surface (left). Rendering of a teapot exhibiting
self-shadows and self-occlusions (right).

Despite the quality of the results obtained when rendering the inte-
rior of object surfaces, silhouettes are rendered as regular polygonal
silhouettes, with no details added to them (Figure 9 (left)). Figure 5
illustrates the two possible paths for a viewing ray entering BB. In
this example, ray A hits the height-field surface, while ray B misses
it. Since the ray-intersection procedure has no information about
whether ray B corresponds to a silhouette fragment (and should be
discarded) or not, it always returns the coordinates of the intersec-
tion of B with a tiled version of the texture. Thus, all fragments
resulting from the scan conversion of the object will lend to an in-
tersection, causing the object’s silhouette to match the polygonal
one.

ray B ray A
(i) (st)
0.0
hit

e A

g

§

1.0

0.0 (w, V)z" 1.0

Figure 5: Possible paths for a viewing ray. Ray A intersects the
height field surface, while ray B misses it.

o
=]
=
S

£
a
o

<

=

Figure 6: The height field surface is deformed to locally fit the ob-
ject’s surface. In this case, any ray missing the surface can be safely
discarded.

3 Relief Mapping with Correct Silhouettes

One way to eliminate the ambiguity regarding to whether ray B be-
longs to a silhouette or not is to locally deform the the height-field
surface forcing it to fit the object’s geometry, as shown in Figure 6.
In this case, any ray missing the surface belongs to the object’s sil-
houette and can be safely discarded. It turns out that the abstraction
depicted in Figure 6 can be directly implemented in texture space
using a GPU. Recall that the height-field surface is providing a mea-
sure of how deep the relief surface is with respect to the object’s
surface. Thus, let (s,¢) be the texture coordinates of a fragment
f, the entry point of the viewing ray into the deformed bounding
box (Figure 6). By having a geometric representation of the local
surface defined in f’s tangent space, finding the intersection of the
viewing ray with the deformed height-field surface is equivalent to
keep track of how deep the ray is inside the deformed bounding
box. In other words, the intersection point can be defined as the
point along the ray inside the deformed bounding box where the
ray’s depth first matches the depth of the height-field surface.

In order to have a local representation of the surface to be used as
the deformed bounding box, we fit a quadric surface at each ver-
tex of the polygonal model during a pre-processing stage. Let T be
the set of triangles sharing a vertex v, with coordinates (xg,yi,zx)
and let V = {vy,vs,..,v,} be the set of vertices in 7. The co-
ordinates of all vertices in V are expressed in the tangent space
of vg. Thus, given V' = {V|,v},..,v},}, where v = (x},},2}) =
(% — Xk, ¥i — Yk, Zi — 2k)» We compute the quadric coefficients for
v using the 3D coordinates of all vertices in Vl/ . For a detailed de-
scription of methods for recovering quadrics from triangles meshes,
we refer the reader to [Sylvain 2002].

In order to reduce the amount of data that needs to be stored at each
vertex, we fit the following quadric to the vertices:

7 =ax® +by? (1

The a and b coefficients are obtained solving the system Ax =b
shown in Equation 2:

22 a J
2 N (;) = = @)
22 2 Z

These per-vertex coefficients are then interpolated during rasteriza-
tion and used for computing the distance between the viewing ray
and the quadric surface on a per-fragment basis. According to our

experience, the least-squares solution (i.e., X = (ATA)*IATb) is
sufficiently stable for this application, requiring the inversion of a
matrix that is only 2 by 2. Despite the small number of coefficients,
Equation 1 can represent a large family of shapes, some of which
are depicted in Figure 7.

/

iy

//II"'OOQ““\“%\\@%\ = Y. W

A N7
()

i i NN
i Y
R
W 0
il %

i

7
I

iy

Wiy

Uil
Wi i
’,'I”'"”"

U
Ml RN
i

(© (d

Figure 7: Examples of quadrics used to locally approximate the
object’s surface at each vertex. (a) Paraboloid. (b) Hyperbolic
paraboloid. (c) Parabolic cylinder. (d) Plane.

3.1 Computing the Ray-Quadric Distance

In order to compute the distance to the quadric as the viewing ray
progresses, consider the situation depicted in Figure 8, which shows
the cross sections of two quadric surfaces. In both cases, the viewer
is outside looking at the surfaces, V is the unit vector along the
viewing direction V, N the normal to the quadric Q at the origin
of fragment f’s tangent space (the point where the viewing vector
first intersects Q), and P is a point along V for which we want to
compute the distance to Q. P can be defined as

P=V: 3)

where 7 is a parameter. First, consider the case shown in Figure 8
(left). Let U be a unit vector perpendicular to V and coplanar to V

and N. Let R be a point on Q obtained from P by moving s units
along the U direction:

R = (Rx,Ry,R;) = P+Us. 4)

The distance from P to the quadric Q is simply s, which can be ob-
tained by substituting the coordinates of R into the quadric equation
(Equation 1):

a(Ry)? +b(Ry)> —Rz =0

a(Pe+Uss)* +b(P,+Uys)* — (P, +Uys) =0)
After grouping the terms, the positive value of the parameter s is
given by:
—B+ VB2 —4AC
ST ©

where A = (aljx2 + bUyz), B = (2aP,U, + 2bP,U, — U,), and
C = (aP®+bP? —P,). Note that for the range of values of the
variable ¢ for which the viewing ray is inside the quadric, the dis-
criminant of Equation 6 is non-negative. A simple inspection of the
geometry of Figure 8 (left) confirms this.

Figure 8: Cross sections of two quadric surfaces. P is a point along
the viewing ray. (Left) R is a point on the quadric Q, obtained from
P along the direction U, which is perpendicular to V. The distance
between P and Q is given by the segment PR. (Right) The distance
between P and Q is given by the segment PR’

If the value of the discriminant of Equation 6 is negative, this in-
dicates that either: (i) both principal curvatures of the quadric are
negative (i.e., k] and kp < 0), or (ii) the Gaussian curvature of the
quadric is negative or zero (i.e., K] k» < 0). In both cases, the dis-
tance between the viewing ray at point P and the quadric Q should
be computed as depicted in Figure 8 (right). Thus, given (P, P, P,),
the coordinates of point P, the expression for computing the ray-
quadric distance is given by

PQdistance = PZ - (a(Px)z +b(RV)2) (7)

which is the difference between the Z coordinate of P and the Z
coordinate of the quadric evaluated at (P, P;).

Figure 9: Renderings of two relief-mapped objects: a cylinder (top)
and a teapot (bottom). (Left) Image created using the original re-
lief mapping technique. Note the lack of details at the silhouette.
(Center) Correct silhouette produced by the proposed technique.
(Right) Same as the center image with the superimposed triangle
mesh, highlighting the differences.

3.2 A Faster, Approximate Solution

Computing the discriminant of Equation 6 and then deciding
whether to evaluate Equation 6 or Equation 7 requires a consid-
erable amount of effort from a GPU, as this procedure has to be
repeated several times for each fragment. A much simpler approx-
imate solution can be obtained by using Equation 7 to handle all
cases. When the discriminant of Equation 6 is non-negative, the
approximation error increases as the viewing direction approaches
the direction of vector N. Figure 10 illustrates this situation.

Compared to the solution represented by Equation 6, this simpli-
fication lends to a GPU code with about only half of the number
of instructions. In our experiments, we have experienced a two-
fold speedup with the implementation of the approximate solution
compared to the correct one. It should be noted that approximation
errors are bigger for viewing directions closer to the surface normal
(see Figure 10). According to our experience, although switching
between the two solutions tends to reveal differences between im-
ages, consistent use of the approximate solution produces plausible
renderings and does not introduce distracting artifacts. Figure 11
compares the renderings produced by the two methods. By exam-
ining one image at a time, it is virtually impossible to say which
method was used to render it.

4

Figure 10: Error in the ray-quadric distance resulting from the ap-
proximate solution. The actual distance computed with Equation 6
is represented by the blue segment, while the green segment indi-
cates the approximate distance as computed using Equation 7.

Figure 11: Comparison between the two approaches for computing
the distance between the viewing ray and a quadric. (Left) More
accurate solution as described in Section 3.1. (Right) The approxi-
mate solution based only on Equation 7.

3.3 Reducing the Search Space

In order to optimize the sampling during the linear search and im-
prove rendering speed, the distance D, from the viewing ray to the
quadric should only be computed for the smallest possible range of
the parameter ¢ (in Equation 3). Since the maximum depth in the
normalized height-field representation is limited to 1.0 (Figure 6),
the search can be restricted to the values of 7 in the interval [0, #4x].
As the depth map includes no holes, a ray that hits depth 1.0 in tex-
ture space has reached the bottom of the height field, characterizing
an intersection. On the other hand, a ray that returns to depth 0.0
(e.g., ray B in Figure 6) can be safely discarded as belonging to the
silhouette. Thus, 4y is the smallest ¢ > O for which D, =0 or
Dy =1.

For the more accurate solution, #,,,4x sAhould bg computed by setting
s =0 and s = 1, substituting P = (V,#,V,1,V.t) (Equation 3) into

Equation 5 and then solving for z. For the approximate solution, the
value of 4y is obtained by setting PQ jisrance = 0 and PQyisrance =
1 into Equation 7 and then solving for 7.

3.4 Computing Intersections in Texture Space

So far, the ray-intersection procedure has been described in the frag-
ment’s tangent space. In order to perform the intersection in texture
space, we first need to transform both the quadric and the viewing
ray to texture space. Thus, let sy and sy, be the actual dimensions of a
texture tile in the tangent space of a given vertex vy (i.e., the dimen-
sions of a texture tile used to map the triangles sharing v;). These
values are defined during the modeling of the object and stored on
a per-vertex basis. Also, let s, be the scaling factor to be applied
to the normalized height-field surface (i.e., the maximum height
for the surface details in 3D). The mapping from the relief-texture
space to tangent (or object space) can be described as:

('xO?y()yZU) = (erx,ytSy,ZrSz)

where the subscripts o and ¢ indicate object and texture space, re-
spectively. Therefore, the quadric defined in tangent space

20 = LLX% + by%
can be rewritten as
215, = a(xise)? + (visy)

By rearranging the terms, the same quadric can be expressed in
texture space as

7 = ox? + By? (8)

where o = a(s2/s;) and B = b(sf/sz). X, yr and z; are all in the
range [0, 1]. Likewise, the viewing direction in texture space, V;, is
obtained from V,, the viewing direction in object space, as:

(Vtmvty,vtz) = (VOX/vavoy/s)HVGZ/SZ))

Using Equations 8 and 9, the entire computation can be performed
in texture space. The values of s, and s, will be interpolated during
rasterization, while s is parameter controlled by the user.

3.5 Depth Correction and Shadows

In order to be able to combine the results of relief-mapped ren-
derings with arbitrary polygonal scenes, one needs to update the
Z-buffer appropriately to compensate for the simulated geometric
details. This is required for achieving correct surface interpenetra-
tions as well as to support the shadow mapping algorithm [Williams
1978]. Thus, let near and far be the distances associated with the
near and far clipping planes, respectively. The Z value that needs
to be stored in the Z-buffer for a given relief-mapped fragment is
given by:
AR (far+near)+2(far)(near)
- ze(far—near)

where z, is the z coordinate of the fragment expressed in eye space.
Figure 12 shows two coincident cylinders mapped with relief of
different materials. Note the correct interpenetration involving the
surface details. Depth correction at fragment level using Z-buffer
modulation has also been used in [Oliveira et al. 2000; Gumhold
2003].

As we distort a height field according to the local surface, one
has no direct way of computing the texture coordinates associ-
ated with the entry point of a shadow ray, as done in the original

relief-mapping formulation (Figure 4 (left)). As a result, we render
shadows using the hardware support for shadow mapping [Williams
1978]. Figure 13 shows a scene depicting shadows cast by the sim-
ulated relief onto other scene objects and vice-versa.

Figure 12: Two coincident cylinders mapped with relief of different
materials. Note the correct interpenetrations of the surface details.

=

Figure 13: Shadows cast by the simulated relief onto other scene
objects and vice-versa.

4 Results

We have implemented the techniques described in the paper as frag-
ment programs written in Cg and used them to map details to the
surfaces of several polygonal objects. The computation of the per-
vertex quadric coefficients was performed off-line using a separate
program. Relief mappings are defined in the conventional way, as-
signing texture coordinates to the vertices of the model. All textures
used to create the illustrations shown in the paper and the accom-
panying videos are 256x256 RGB« textures. The depth maps were
quantized using 8 bits per texel. The quantized values represent
evenly spaced depths, and can be arbitrarily scaled during render-
ing time using the s; parameter mentioned in Section 3.4. Shad-
ows were implemented using shadow maps with 1024x1024 texels.
Except for the examples shown in Figures 11 (left) and 14, all im-
ages were rendered using the approximate algorithm described in
Section 3.2. The scenes were rendered at a resolution of 800x600
pixels at 85 frames per second, which is the refresh rate of our mon-
itor. These measurements were made on a 3 GHz PC with 512 MB

of memory using a GeForce FX6800 GT with 256 MB of memory.
Accompanying videos were generated in real time.

Figure 15: Torus with stone relief mapping. (Left) Image produced
with the new algorithm. Note the silhouette. (Right) The superim-
posed triangle mesh reveals silhouette fragments.

Figures 1 and 16 show two scenes containing several relief texture-
mapped objects. In Figure 1, the columns, walls and a stone object
at the center of the room were rendered using relief mapping. No-
tice the correct silhouettes and the shadows cast on the walls and
floor. Figure 16 shows another scene where the ceiling and a path-
way are also relief-mapped objects.

Figures 9 compares the renderings produced by the original tech-
nique and the new one. The images on the left were rendered using
the technique described in [Policarpo et al. 2005]. Notice the ob-
jects’ polygonal silhouettes. At the center, we have the same models
rendered using the proposed technique. In this case, the silhouettes
exhibit the correct profile for the surface details. The rightmost
columns of Figures 9 and 17 also show the renderings produced
with the new technique, but superimposed with the corresponding
triangle meshes. The meshes highlight the areas where differences
between the results produced by the two techniques are mostly no-
ticeable. The texture filtering associated with the sampling of the
relief textures guarantees that the sampling is performed against a
reconstructed version of the height-field surfaces. As a result, the
technique allows for extreme close-up views of objects’ surfaces
and silhouettes. The results are good even for low-resolution tex-
tures.

Figure 11 shows a comparison between some results produced by
the more accurate and the approximate solutions for computing the
intersection of a viewing ray with a height-field surface. Although
a side-by-side comparison reveals some differences, according to
our experience, the use of the approximate solution does not intro-
duce any distracting artifacts. Moreover, considering one image at
a time, it is virtually impossible to distinguish the results produced
by both algorithms.

Figure 12 shows two interpenetrating surfaces whose visibility is
solved by Z-buffer modulation, as discussed in Section 3.5. These
surfaces correspond to two coincident cylinders that were relief-
mapped using different textures.

Examples of shadows involving mapped relief and other scene ob-
jects are depicted in Figure 13. Note that the relief details cast
correct self-shadows as well as shadows on other polygonal objects
in the scene. Likewise, shadows cast by other elements of the scene
are correctly represented in the simulated geometry.

Figure 15 show a top view of a torus revealing some of the details
of its silhouette. Figure 14, on the other hand, shows a close-up
view of a saddle region corresponding to a portion of another torus.
This illustrates the ability of our algorithm to successfully handle

Figure 14: Close-up of a portion of a torus mapped with a stone relief texture, illustrating the rendering of a surface with negative Gaussian
curvature. (Left) Original technique. (Center) Proposed approach; (Right) Polygonal mesh highlighting the differences.

Figure 16: Scene containing several relief-mapped objects: a col-
umn, the ceiling, the walls, and a pathway.

surfaces with negative Gaussian curvature. Figure 18 shows the
same torus of Figure 15 textured using different numbers of tiles.

5 Conclusion

We have introduced an efficient technique for rendering surface
details onto arbitrary polygonal models. Like conventional dis-
placement mapping, this new approach produces correct silhou-
ettes, self-occlusions, interpenetrations and shadows. Unlike dis-
placement maps, however, it does not require any changes to the
object’s original geometry nor involves rendering micro-polygons.
The technique works in image space and has very low memory re-
quirements. The on-the-fly filtering performed during the sampling
of the textures used to store depth maps guarantees that we always
sample a reconstructed version of the height-field surfaces. As a re-
sult, the technique supports extreme close-up views even with low-
resolution relief textures.

In this new approach, object surfaces are locally approximated us-

Figure 17: Relief-mapped objects rendered using the proposed ap-
proach. Notice the correct silhouettes (left).The superimposed tri-
angle meshes highlight the differences between the obtained silhou-
ettes and the polygonal ones.

ing a piecewise-quadric representation at fragment level. The algo-
rithm is based on a ray-intersection procedure performed in texture
space that can be efficiently implemented on current GPUs. As
such, this paper demonstrates an effective way of using graphics
hardware for image-based rendering.

As in the original relief mapping algorithm [Policarpo et al. 2005],
a linear search is used to obtain an approximate location of the
first intersection between the viewing ray and the height-field sur-
face. This approximate location is further improved using a binary
search. However, depending on the step size used, it might be pos-
sible for the linear search to miss very fine structures in the height
field. Although in practice we have not noticed such aliasing ar-
tifacts, an improved sampling strategy will probably be necessary
for rendering very fine details. We are also investigating ways of
accelerating the search for the first intersection point. The use of
space leaping [Wan et al. 2002] seems to be a promising approach,
with the potential to significantly reduce the number of instructions
that need to be executed by a pixel shader.

Figure 18: A torus mapped with a relief texture using different num-
bers of tiles.

References

BLINN, J. F. 1978. Simulation of wrinkled surfaces. In Proceed-

ings of the 5th annual conference on Computer graphics and in-
teractive techniques, ACM Press, 286-292.

Cook, R. L. 1984. Shade trees. In Proceedings of the 11th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, 223-231.

DOGGETT, M., AND HIRCHE, J. 2000. Adaptive view dependent
tessellation of displacement maps. In HWWS "00: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graph-
ics hardware, ACM Press, 59-66.

GUMHOLD, S. 2003. Splatting illuminated ellipsoids with depth
correction. In 8th International Fall Workshop on Vision, Mod-
elling and Visualization, 245-252.

HEIDRICH, W., AND SEIDEL, H.-P. 1998. Ray-tracing procedural
displacement shaders. In Graphics Interface, 8-16.

HEIDRICH, W., DAUBERT, K., KAUTZ, J., AND SEIDEL, H.-P.
2000. Iluminating micro geometry based on precomputed visi-
bility. In Siggraph 2000, Computer Graphics Proceedings, ACM
Press / ACM SIGGRAPH / Addison Wesley Longman, K. Ake-
ley, Ed., 455-464.

HIRCHE, J., EHLERT, A., GUTHE, S., AND DOGGETT, M.
2004. Hardware accelerated per-pixel displacement mapping.
In Graphics Interface, 153 — 158.

KANEKO, T., TAKAHEI, T., INAMI, M., KAWAKAMI, N.,
YANAGIDA, Y., MAEDA, T., AND TACHI:, S. 2001. Detailed
shape representation with parallax mapping. In Proceedings of
the ICAT 2001, 205-208.

KAuTzZ, J., AND SEIDEL, H.-P. 2001. Hardware accelerated dis-
placement mapping for image based rendering. In Proceedings
of Graphics Interface 2001, B. Watson and J. W. Buchanan, Eds.,
61-70.

MAX, N. 1988. Horizon mapping: shadows for bump-mapped
surfaces. The Visual Computer 4,2, 109-117.

MEYER, A., AND NEYRET, F. 1998. Interactive volumetric tex-
tures. In Eurographics Rendering Workshop 1998, Springer
Wein, New York City, NY, G. Drettakis and N. Max, Eds., Euro-
graphics, 157-168. ISBN 3-211-83213-0.

MOULE, K., AND McCooL, M. 2002. Efficient bounded adaptive
tesselation of displacement maps. In Graphics Interface, 171—
180.

OLIVEIRA, M. M., BISHOP, G., AND MCALLISTER, D. 2000.
Relief texture mapping. In Siggraph 2000, Computer Graphics
Proceedings, ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, K. Akeley, Ed., 359-368.

PATTERSON, J., HOGGAR, S., AND LOGIE, J. 1991. Inverse
displacement mapping. Computer Graphics Forum 10, 2, 129—
139.

PHARR, M., AND HANRAHAN, P. 1996. Geometry caching
for ray-tracing displacement maps. In Eurographics Rendering
Workshop 1996, Springer Wien, New York City, NY, X. Pueyo
and P. Schroder, Eds., 31-40.

POLICARPO, F., OLIVEIRA, M. M., AND COMBA, J. 2005. Real-
time relief mapping on arbitrary polygonal surfaces. In Proceed-
ings of ACM Symposium on Interactive 3D Graphics and Games
2005, To Appear.

SCHAUFLER, G., AND PRIGLINGER, M. 1999. Efficient displace-
ment mapping by image warping. In Eurographics Rendering
Workshop 1998, Springer Wein, New York City, NY, D. Lischin-
ski and G. Larson, Eds., Eurographics, 175-186. ISBN 3-211-
83382-X.

SMITS, B. E., SHIRLEY, P., AND STARK, M. M. 2000. Direct
ray tracing of displacement mapped triangles. In Proceedings
of the Eurographics Workshop on Rendering Techniques 2000,
Springer-Verlag, 307-318.

SYLVAIN, P. 2002. A survey of methods for recovering quadrics in
triangle meshes. ACM Computing Surveys 2, 34 (July), 1-61.

WAN, M., SADIQ, A., AND KAUFMAN, A. 2002. Fast and reliable
space leaping for interactive volume rendering. In Proceedings

of the conference on Visualization 02, IEEE Computer Society,
195-202.

WANG, L., WANG, X., ToNG, X., LIN, S., Hu, S., Guo, B,
AND SHUM, H.-Y. 2003. View-dependent displacement map-
ping. ACM Trans. Graph. 22, 3, 334-339.

WANG, X., TONG, X., LIN, S., HU, S., GUO, B., AND SHUM,
H.-Y. 2004. Generalized displacement maps. In Eurographics
Symposium on Rendering 2004, EUROGRAPHICS, Keller and
Jensen, Eds., EUROGRAPHICS, 227-233.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
In Siggraph 1978, Computer Graphics Proceedings, 270-274.

