
ICMP	Traceroute	Lab	
	
In this lab you will learn how to implement a traceroute application using ICMP request and reply
messages. Students are strongly encouraged to first do the ICMP Ping lab before the ICMP Traceroute
lab as it is done with the same approach. The checksum and header making are not covered in this lab,
refer to the ICMP ping lab for that purpose, the naming of most of the variables and socket is also the
same.

Traceroute is a computer networking diagnostic tool which allows a user to trace the route from a host
running the traceroute program to any other host in the world. Traceroute is implemented with ICMP
messages. It works by sending ICMP echo (ICMP type ‘8’) messages to the same destination with
increasing value of the time-to-live (TTL) field. The routers along the traceroute path return ICMP Time
Exceeded (ICMP type ‘11’) when the TTL field become zero. The final destination sends an ICMP reply
(ICMP type ’0’) messages on receiving the ICMP echo request. The IP addresses of the routers which
send replies can be extracted from the received packets. The round-trip time between the sending host and
a router is determined by setting a timer at the sending host.

Your task is to develop your own Traceroute application in python using ICMP. Your application will use
ICMP but, in order to keep it simple, will not exactly follow the official specification in RFC 1739..	
	
Code	
Below you will find the skeleton code for the client. You are to complete the skeleton code. The places
where you need to fill in code are marked with #Fill in start and #Fill in end. Each place may
require one or more lines of code.

Additional	Notes	

1. You do not need to be concerned about the checksum, as it is already given in the code.
2. This lab requires the use of raw sockets. In some operating systems, you may need administrator/root

privileges to be able to run your Traceroute program.
3. See the end of Lab 4 ‘ICMP Pinger’ programming exercise for more information on ICMP.
4. This will not work for websites that block ICMP traffic.
5. You will have to turn your firewall or antivirus software off to allow the messages to be sent and

received.

	
What	to	Hand	in	
You	will	hand	in	the	complete	code	and	screenshots	of	your	Traceroute	output	for	four	different	target	
hosts.	

Skeleton	Python	Code	for	the	ICMP	Traceroute	
	
from socket import *

import os

import sys

import struct

import time

import select

import binascii

ICMP_ECHO_REQUEST = 8

MAX_HOPS = 30

TIMEOUT = 2.0

TRIES = 2

The packet that we shall send to each router along the path is the ICMP echo

request packet, which is exactly what we had used in the ICMP ping exercise.

We shall use the same packet that we built in the Ping exercise

def checksum(string):

In this function we make the checksum of our packet

hint: see icmpPing lab

def build_packet():

In the sendOnePing() method of the ICMP Ping exercise ,firstly the header of our

packet to be sent was made, secondly the checksum was appended to the header and

then finally the complete packet was sent to the destination.

Make the header in a similar way to the ping exercise.

Append checksum to the header.

Don’t send the packet yet , just return the final packet in this function.

So the function ending should look like this

 packet = header + data

 return packet

def get_route(hostname):

 timeLeft = TIMEOUT

 for ttl in range(1,MAX_HOPS):

 for tries in range(TRIES):

 destAddr = gethostbyname(hostname)

 #Fill in start

 # Make a raw socket named mySocket

 #Fill in end

 mySocket.setsockopt(IPPROTO_IP, IP_TTL, struct.pack('I', ttl))

 mySocket.settimeout(TIMEOUT)

 try:

 d = build_packet()

 mySocket.sendto(d, (hostname, 0))

 t= time.time()

 startedSelect = time.time()

 whatReady = select.select([mySocket], [], [], timeLeft)

 howLongInSelect = (time.time() - startedSelect)

 if whatReady[0] == []: # Timeout

 print(" * * * Request timed out.")

 recvPacket, addr = mySocket.recvfrom(1024)

 timeReceived = time.time()

 timeLeft = timeLeft - howLongInSelect

 if timeLeft <= 0:

 print(" * * * Request timed out.")

 except timeout:

 continue

 else:

 #Fill in start

 #Fetch the icmp type from the IP packet

 #Fill in end

 if types == 11:

 bytes = struct.calcsize("d")

 timeSent = struct.unpack("d", recvPacket[28:28 +
bytes])[0]

 print(" %d rtt=%.0f ms %s" %(ttl,
(timeReceived -t)*1000, addr[0]))

 elif types == 3:

 bytes = struct.calcsize("d")

 timeSent = struct.unpack("d", recvPacket[28:28 +
bytes])[0]

 print(" %d rtt=%.0f ms %s" %(ttl,
(timeReceived-t)*1000, addr[0]))

 elif types == 0:

 bytes = struct.calcsize("d")

 timeSent = struct.unpack("d", recvPacket[28:28 +
bytes])[0]

 print(" %d rtt=%.0f ms %s" %(ttl,
(timeReceived - timeSent)*1000, addr[0]))

 return

 else:

 print("error")

 break

 finally:

 mySocket.close()

get_route("google.com")

Optional	Exercises	

Currently	the	application	only	prints	out	a	list	of	ip	addresses	of	all	the	routers	along	the	path	from	
source	to	the	destination.	Try	using	the	gethostbyname	method	to	print	out	the	names	of	each	
intermediate	route	along	the	route.

