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Abstract— Keyframe-based monocular SLAM (Simultaneous
Localization and Mapping) is one of the main visual SLAM
approaches, used to estimate the camera motion together with
the map reconstruction over selected frames. These techniques
represent the environment by map points located in the three-
dimensional space, that can be recognized and located in the
frame. However, these techniques usually cannot decide when
a map point is an outlier or obsolete information and can be
discarded. Another problem is to decide when combining map
points corresponding to the same three-dimensional point. In
this paper, we present a robust method to maintain a refined
map. This approach uses the covisibility graph and an algorithm
based on information fusion to build a probabilistic map, that
explicitly models outlier measurements. In addition, we incor-
porate a pruning mechanism to reduce redundant information
and remove outliers. In this way, our approach manages to
reduce the map size maintaining essential information of the
environment. Finally, in order to evaluate the performance of
our method, we incorporate it into an ORB-SLAM system and
measure the accuracy achieved on publicly available benchmark
datasets which contain indoor images sequences recorded with
a hand-held monocular camera.

I. INTRODUCTION

In recent years the interest in using cameras as sensors in
SLAM has increased, and some authors have been concen-
trating on building 3D models using visual information [1],
[2], [3]. The reasons for this interest are not only because
of their low power consumption, small size, and cost, but
also for their ability to provide rich information about the
surrounding environment, such as color, texture, motion, and
structure.

Environment models or maps serve as essential resources
for an autonomous robot by providing it with the necessary
relevant information about the scenario. Their use enables
robots to perform their tasks more reliably, flexibly, and
efficiently. For instance, a map can inform path planning
or provide an intuitive visualization for a human operator.
Besides, they allow limiting the error produced in estimating
the state of the robot.

Recently, many keyframe-based SLAM methods have
been presented which were proven effective to accurately
estimate trajectories while geometrically reconstructing the
unknown environment. These methods represent the scene as
a set of sparse 3D landmarks corresponding to discriminative
features in the environment (e.g., points, lines, polygons) [4],
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[5], [6], and retain a selected subset of previous observations
called keyframes that explicitly represent past knowledge
gained [7], [3]. A common assumption underlying these
representations is that the landmarks are distinguishable and
provide a descriptor which establishes a data association
between each measurement and the corresponding landmark.
In this sense, the robot can operate for an extended time
and revisit a place several times, while new information
is continuously added in the map. However, this becomes
problematic since the size of the map grows only with the
mapping duration and not with the size of the area explored.
Furthermore the new information can be repetitive, or, even
worse, outliers. The inclusion of a single outlier degrades the
quality of the estimate, which in turn degrades the capability
of discerning outliers later on. Therefore, it is necessary to
have approaches that can deal with repetitive information and
outliers to maintain a refined representation of the map.

In this paper, we present a new method to maintain a
refined map through the pruning of map points that can
have a direct influence on the performance of the visual
SLAM process. The approach aims at the remotion of
outliers generated from a poor depth estimate, or map points
visualized only in some frames, that over time becomes
obsolete information. Our method also deals with repetitive
information in order to maintain a good quality map and
counteract the effect of the frequent addition of features.
This paper is organized as follows: Section II deals with
related works. Section III presents our method in details.
Section IV shows the results of the experimental validation
of the proposed approach. Finally, Section V provides our
conclusions.

II. RELATED WORK

Over the last decade, numerous efforts have been made to-
wards minimizing the computational requirements of SLAM
by reducing the number of variables (observations and poses)
in the state space, while keeping the sparse structure of the
problem. Due to the popularity of graph-based optimization
solutions for SLAM, researchers investigated how to reduce
the number of nodes in the SLAM graph. Some approaches
focused on determining which node to remove from the
graph and how to treat the resulting graph. Konolige et al.
[8] clustered nodes in the graph according to their spatial
distance. They remove the least recently used nodes among
each cluster, in order to keep a limited number of nodes and
still capture the dynamic nature of the environment. A similar
idea has been introduced by Eade et al. [9], who propose
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to remove nodes without data or associated with similar
observations of existing nodes in the vicinity. Moreover, Ila
et al. [10] use an information-theoretic approach which only
keeps non-redundant poses and highly informative measure-
ments to the graph. Finally, Johannsson et al. [11] reuse
already existing poses in previously mapped areas, keeping
the number of poses bounded by the size of the explored
environment and use the new measurements to improve the
map.

Keyframe-based approaches are among the first attempt
to reduce the pose graph for visual SLAM. Such approaches
create a sparse pose graph, where each node is a selected
keyframe representing the prominent visual appearances and
variations in order to keep the density of poses constant. In
2007, PTAM was introduced by Klein and Murray [7], which
provides simple but effective methods for keyframe selection,
patches matching, point triangulation, camera localization,
and relocalization after tracking failure. Unfortunately, sev-
eral factors limit its application, and one of the biggest
problems is the constant insertion of keyframes, even if the
camera is looking at the scene from different viewpoints,
that causes excessive growth of the map size. More recently,
the ORB-SLAM system has been proposed [3], expanding
the versatility of PTAM to environments that are intractable
for that system. ORB-SLAM integrates a very efficient
place recognition system to perform relocalization and loop
closing. In addition, it incorporates a pruning mechanism
to maintain a compact reconstruction, which detects redun-
dant keyframes and delete them, using a minimum visual
change criterion instead of using a distance criterion to other
keyframes as PTAM. This mechanism allows a flexible map
expansion during the exploration.

In this sense, our approach uses a covisibility graph
[12] similar to the one employed by ORB-SLAM and an
information fusion algorithm as Forster et al. [13] or Pizzoli
et al. [14], to reduce the number of outliers and combine
repetitive information in the map. Then, we represent the
depth information of each map point as a mixture of prob-
ability distributions and take advantage of the keyframe
neighborhoods created in the covisibility graph to update
these probabilities and thus maintain the highest possible
accuracy of depth estimation. Additionally, to reduce outliers
in the map and the number of redundant keyframes, a pruning
policy based on the depth accuracy of the map points is
performed.

III. MAP POINT OPTIMIZATION IN
KEYFRAME-BASED SLAM

In the following, we introduce our approach that uses
a covisibility graph [12] and an algorithm of information
fusion [14] to maintain a refined map in keyframe-based
monocular SLAM process.

A. Map Representation

Our map is represented as a set of map points {"p; Ij‘-’lzl,
keyframes {"K;}Y |, and an undirected weighted graph G
known as covisibility graph, where each node is a keyframe,

and an edge between two keyframes exists if they share at
least & common map points.

Each map point "p; corresponds to an ORB feature,
which represents a textured planar patch in the world whose
position has been triangulated from different views. Each
map point stores:

"X; € R3*1 | 3D position in the world coordinate system
n; € R3*1 viewing direction
dins Amax minimum and maximum distances at which it can be

observed, according to the scale invariance limits of
the ORB features

D b representative ORB descriptor, whose hamming dis-
tance is minimum to all other associated descriptors
in the keyframes where the map point is observed

On the other hand, each keyframe "K; in the world stores:

F; set of all ORB features extracted in the frame

T, € SE (3) camera pose, which is a rigid body transformation
that transforms map points from the world to the
camera coordinate system

K € R¥3 camera intrinsics parameters, including focal length

and principal point

B. Probabilistic Depth Sensor

During the map creation, the robot collects information
and builds a representation of the environment where it is
located. In keyframe-based SLAM, cameras are commonly
used to get such information by performing depth measure-
ments through the captured images. These measurements
are always subject to errors called noise, and there may
also be seemingly random measurements that are caused by
photometric inconsistency. In this way, when the task is to
create an accurate map of the environment from such noisy
measurements, a probabilistic approach is necessary. Thus,
we model each depth measurement d obtained by the sensor
as a distribution that mixes a good measurement model with
a bad one, as in the work of Forster et al. [13]. The good
measurement is normally distributed around the true depth d
whereas the bad one is uniformly distributed in all possible
depth locations in the interval [dyin,dmay], Which is known
to contain the true depth. Our mixture model distribution is
defined as

(1 _p) U(d | dmimdmaX)7

ey
where d is the depth measurement, the parameter p indicates
the purity of the measurement (inlier probability) and 77 is
the variance of a good measurement, which can be computed
geometrically by assuming a fixed variance of one pixel
in the image plane defined by the relative position of the
cameras that produced the measurement [14].

p(d|d.p)=pN (d|d,*)+

C. Depth Bayesian Inference

The uncertainties in sensors arise not only from the
imprecision and noise in the measurements, but also from
the ambiguities and inconsistencies present in the environ-
ment, and by the inability to distinguish them. Information
fusion algorithms can exploit redundant data to alleviate
such effects. Briefly, we can define information fusion as the



process of integrating multiple information sources to obtain
improved and useful information as accurately possible [15].
The creation of new map points is necessary to represent the
new information every time that a new keyframe is selected.
In this sense, we first update the covisibility graph by adding
a new node for the new keyframe and creating the covisibility
edges, as shown in Fig. 1. Due to these updates in the cov-
isibility graph, a vicinity is generated for this new keyframe
which we use to compute new depth measurements. Later, we
collect and combine these measurements using information
fusion to infer a single depth estimation with the higher
possible accuracy. In order to achieve this goal, we use
Bayesian inference [16].

Fig. 1: Covisibility graph with nodes representing keyframes
and edges representing their covisibility [12].

Given a new keyframe “K, and a covisibility graph G,
for each feature found in the new keyframe there is a set
of noisy depth measurement denoted by d; for i =1,....k
obtained from the triangulation of the new keyframe with k
neighbours of the covisibility graph. In order to simplify the
problem and allow the use of Bayesian estimation we assume
that all measurements dy,...,d; are independent. Therefore
the depth posterior is approximated by the product of the
marginal probabilities,

p(J,p|d1,7dk)°<p(6i,p)Hp(dk‘d\7P), (2)
k

with p(d,p) being a prior on the true depth and the inlier
probability.

Vogiatzis et al. [17] prove that the posterior can be
approximated by the product of Gaussian x Beta distributions
which minimizes the Kullback-Leibler divergence from the
true posterior,

p(d.p | dy,....dy) o< N (d | p, 0F)Beta(p | ag,bi),  (3)

which can be parametrized with four parameters, where the
first two parameters, a; and by control the Beta distribution.
The other two, t; and sz represent the mean and variance
of the Gaussian distribution. This leads to

q(d:p | ak;bkau/ﬂGkZ) o< JV(CI/'\‘ :ukaGkZ)Beta(p | akabk)' (4)

Once defined the posterior, the Bayesian estimation allows
us to integrate new measurements in order to update the
posterior that describes a new knowledge state, as given by

q(d,p | ax,be, 1k, 07) = q(d,p | ax—1,bx—1, tk—1,0¢_1)
pldi | d,p) (5)

Then, using Eq. (1) and (4) in Eq. (5), and the definition
of Gaussian and Beta distributions, as well as the properties
of the gamma function, we obtain

R Qg
q(d,p | ax, by, i, 0F) = ————— N (dy | te—1,T¢ + 7_)
ax—1+bi_1

q(d,p | a1 +1,by_1,m,s%)
br—1
———U(dy | dpin, d
ak—1+bk—1 ( k| min s max)
Q(d»P ‘ ak*labkfl + 17“](71561371)’

(6)

and we can observe that a; and b; can be thought of as
probabilistic counters of how many inlier and outlier mea-
surements have occurred during the lifetime of the map point.
Furthermore m and s> represent the new mean and variance
obtained from the product of two Gaussian functions, and
are given by

O i+ T

m=——-——————— (7)
2 2 5
t+0of
2 2
2 W%
ST= S5 ®)
7t +0o}

Finally, using Eq. (6) and matching the first and second
moments of the Gaussian and Beta distributions, we can
obtain the new posterior parameters ai, by, U, sz, from
the old parameters ay_1, br_1, Hi—1, sz_l, and the new
measurement dj. For more details on this derivation we refer
to the work in [17].

D. Map Point Optimization

To maintain a refined map, we need a method to detect and
reject outliers and obsolete informations on all observations
made on the new keyframe. Firstly, we define as obsolete
informations those map points that over time do not con-
tribute to the SLAM process. In this way, we have considered
obsolete those map points which have not been observed
in at least three keyframes, this ensure that more than one
measurement has been used in estimating the depth posterior
distribution. Secondly, in order to identify outliers we use a
method that uses only the information contained in the depth
posterior distribution. Our approach takes into account the
amount of inlier measurements that have occurred and the
amount of information gained. In this sense, given the depth
posterior for all observations in the new keyframe we assign
a state for each of them using the conditional defined as:

Converged, if 2% > 1y and 67 < 04,
Diverged,  if —%—1 < Ny 9)

a+br—2
Update, otherwise,

S(qr) =

where g; represent the depth posterior distribution defined
in (4), O¢pyg is the gained information threshold, whereas 1);,
and 1, are the inlier and outlier threshold, respectively. In
(9) we can observe that there are three possible outcomes.



First, if the mode! of the beta distribution is less than Nout
then we conclude that the depth estimation has failed to
converge due to unreliable measurements. Therefore this map
point is removed from the map. Second, if the mean® of the
beta distribution is bigger than 7);, and the variance of the
normal distribution is less than Gcznvg then we assume that the
depth has converged to a good estimate and this map point
remains stable; otherwise it waits for new measurements to
be integrated.

Note that the mean of the beta distribution is used to
evaluate convergence while the mode of the same distribution
is used to evaluate divergence. However, the mean could also
be used to evaluate the divergence, but this value rapidly
tends to extremes as the parameters of the posterior are
updated through equation (5). Due to this behavior, we chose
to use the mode, allowing to maintain the map points for
more time waiting for new measurements to be integrated.
Finally, to deal with repetitive information, the map point is
searched in the neighboring keyframes, if a match is found
it is integrated using the method explained in the previous
section and once again the criteria of Eq. (9) is applied.

IV. EXPERIMENTS

The proposed method was evaluated using the TUM RGB-
D benchmark [18]. The benchmark contains 39 sequences
that were captured by a Microsoft Kinect sensor. Each
sequence contains both the color and depth images in full
sensor resolution (640x480) at video frame rate (30 Hz),
and the ground truth for camera motion that was provided
by a motion capture system with eight high-speed tracking
cameras (100 Hz). We have selected 10 sequences, which
are also used in other works [3], [2]. Our experiments
were performed on a desktop computer with Ubuntu 14.04,
equipped with Intel Core 2 Quad processor and 4GB of
RAM. The keyframe-based monocular SLAM system and
our method are implemented in C++. The values for the
parameters of our method are established as in the work of
Vogiatzis et al. [17] with the inlier threshold 7;,, = 0.7, the
outlier threshold n,,; = 0.05 and the variance threshold anvg
was set at 1/1000¢h of the bounding volume size dyqx — diin-

Next, in order to allow quantitative comparison between
obtained trajectories and ground truths, we computed two
error metrics proposed in [18]: the relative pose error and
the absolute keyframe trajectory error. Finally, to compare
our results, we executed the original ORB-SLAM system
over the same sequences.

A. Removing outliers

To evaluate the resulting map, we used a quantitative
metric such as the map size. Table I provides a summary
of the performance of ORB-SLAM with and without our
proposed method on the 10 sequences. This table shows
the number of keyframes and map points, the relative and
the absolute error of the trajectory. Comparing the sizes

a—1
at+b-2"
-

The mode of a beta distribution Beta(a,b) is given by
2The mean of a beta distribution Beta(a,b) is given by

of the maps obtained by ORB SLAM with and without
our proposed method, we can see that our approach always
manages to reduce a significant percentage of points and
keyframes. On the other hand, it is important to check if
the process of decreasing the map size affects the accuracy
of the estimated trajectory, which is done in the analysis of
pose errors.

B. Relative Pose Error (RPE)

The relative pose error measures the difference between
the estimated and the true motion and is used to evaluate the
local accuracy or the drift of a visual odometry system over
a fixed time interval A. To compute the RPE, the relative
transformation between consecutive poses of the estimated
trajectory P and the ground truth Q are compared at time
step i using

Ei = (0;'Qira) (P Piya),

thus from a sequence of n camera poses are obtained m =n—
A individual relative pose errors. Later, the root mean square
error (RMSE) is computed over all translational components
of these errors along the sequence.

Fig. 2 shows the relative pose error obtained in our
experiments for fr3_long_office, fr2_desk and fr2_desk_person
sequences. In Fig. 2d, 2e and 2f the camera trajectories
estimated by ORB-SLAM with our method are compared
to the ground truth trajectories. We can observe that on each
of these plots, the camera trajectory estimated is close to the
ground truth. The results are very similar to the ones in Fig.
2a, 2b and 2c which are estimated by original ORB-SLAM.
Furthermore, Table I shows the quantitative results of the
RMSE in meters (m) for the relative pose error computed in
each sequence. The results show a similar RMSE, implying
that the result of the trajectory estimation is usually not
degraded by the removal of obsolete information and outliers.
In fact, generally there was a decrease in the relative pose
error. The worst difference of RPE in terms of percentage
happened in dataset number 7, but, even in this case, the
difference in terms of absolute distance was of only 2cm
(0.021m).

(10)

C. Absolute Keyframe Trajectory Error (ATE)

We also checked the absolute keyframe trajectory error,
which focuses on global consistency and is used to evaluate
the performance of visual SLAM systems. The absolute
distances between the estimated keyframes trajectory P and
the ground truth Q at time step i are compared using the
absolute trajectory error,

(an

where § is the rigid-body transformation corresponding to
the least-square solution to the alignment problem, which
maps the estimated keyframes trajectory P onto the ground
truth Q. Then similar to the RPE, the RMSE is computed
over all translational components of the relative pose error
in all time indices.

F=Q; 'SP,



TABLE I: Quantitative evaluations for 10 sequences from the TUM benchmark [18]. From left to right, the columns show:
the dataset name; the path length; the number of keyframes and map points in both methods (the original ORB-SLAM and
the proposed method); the root mean square error (RMSE) of absolute keyframe trajectory (ATE); and the relative pose

error (RPE) in terms of translation. We also show the percentages of reduction for the four metrics.

Dataset Length [m] Keyframes Points ATE (RMSE) [m] RPE (RMSE) [m]
ORB  Our % ORB Our % ORB Our % ORB Our %
1 fri.desk 9.263 63 60 -4.8 3236 2785 -13.9 | 0.014 0.014 -2.1 0.034 0.024 -28.1
2 fr2xyz 7.029 37 29 -21.6 1582 1355 -14.3 | 0.002 0.002 -4.0 0.017 0.018 +4.6
3 fr3_str_tex_far 5.884 25 23 -8.0 1911 1698  -11.1 | 0.009 0.008 -13.6 0.097 0.070 -27.8
4 fr3_walk_halfsph 7.686 45 36 -20.0 1433 1035 -27.8 | 0.016 0.016 -3.0 0.269 0.178  -33.7
5 fr3_str_tex_near 5.050 49 43 -12.2 3188 2969 -6.9 0.011  0.011 -3.5 0.032  0.040 +26.5
6 fr3_sit_halfsph 6.503 76 69 9.2 2570 2096 -18.4 | 0.234 0.010 -95.7 0.235 0.113  -51.9
7 fr3_nstr_tex_near 13.456 67 62 -1.5 4542 4032 -11.2 | 0.014 0.013 -4.3 0.061 0.085  +40.7
8  fr3_long_office 21.455 198 170 -14.1 | 10175 8250 -18.9 | 0.010 0.014 +39.2 0.157  0.158 +0.7
9 fr2_desk 18.880 177 149 -15.8 7288 5914  -189 | 0.008 0.017 +104.8 | 0.093 0.089 -4.5
10 fr2_desk_person 17.044 119 106 -10.9 4565 3863 -15.4 | 0.010 0.008 -16.7 0.100 0.114 +14.6
—— groundtruth —— groundtruth —— groundtruth
— ORB-SLAM — ORB-SLAM — ORB-SLAM

—— groundtruth
— our method

(d

(e)

—— groundtruth
— our method

—— groundtruth
— our method

®

Fig. 2: Relative Pose Error evaluation for fr3_long _office, fr2_desk and fr2_desk_person sequences, showing the results obtained
by ORB-SLAM without our method (2a) (2b) (2¢) and with our method (2d) (2e) (2d).

Fig. 3 presents the comparison of ATE in a single dataset.
Each point represents a keyframe, and the blue points are
those keyframes in the estimated trajectory which are not
considered in the absolute trajectory error computation be-
cause their matches were not found onto the ground truth
at the time of alignment. Fig. 3a, representing the results of

the original ORB-SLAM, shows regions with a high density
of keyframes where there is possibly repeated information,
outliers or obsolete information. In Fig. 3b, representing our
approach, this density decreases. This happens because ORB-
SLAM has a policy that removes keyframes whose 90%
of the map points have been seen in at least other three
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Fig. 3: Absolute Keyframe Trajectory Error evaluation for
fr2_desk sequence, showing the results obtained by ORB-
SLAM without our method (3a) and with our method (3b).

keyframes. Therefore, if the size of the map points decreases,
then the number of keyframes also decreases. Finally, Table I
shows the quantitative results of the RMSE in meters (m) for
the absolute keyframe trajectory computed in each sequence,
where we can observe that the RMSE produced by ORB-
SLAM with our method is very close to the produced by
the original ORB-SLAM. The worst result in terms of ATE
was measured in dataset number 9, in which the error value
doubled. However the original error was so small that the
increase in terms of absolute value was of less than lcm
(0.009m).

V. CONCLUSIONS

In this paper, we have demonstrated how the combined use
of the covisibility graph with an information fusion algorithm
allows us to maintain a refined map during the keyframe-
based SLAM process. We represent the depth information
of each map point as a mixture of distributions and we

take advantage of the keyframe neighborhoods of covisibility
graph to improve depth accuracy. We also perform a pruning
strategy based on the depth accuracy; in this way, our method
removes possible outliers and deals with repetitive infor-
mation. Finally, we have incorporated our method within a
visual SLAM system, and its effectiveness was demonstrated
through extensive experiments on publicly available data,
showing that the presented method is beneficial because it
reduces the size of the map representation without compro-
mise the quality of the trajectory estimate when the robot is
continuously operating in the same environment.
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