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Long-term place recognition using multi-level words of spatial densities

Renan Maffei' Vitor A. M. Jorge!

Abstract— Proper place recognition on an environment that
can change over time is fundamental for long-term SLAM. In
such scenarios the observations obtained in the same region
can drastically differ due to changes caused by semi-static
objects, such as doors, furniture, etc. In this work, we extend a
strategy that represents environment regions using words, based
on spatial density information extracted from laser readings.
This time, in order to deal with changes in the environment, our
method not only builds words representing the real observations
made by the robot, but also alternative multi-level words to
account for possible changes in a place’s observations generated
by non-static objects. Place recognition is made by searching
matches of sequences of N consecutive words (both real or
alternatives). Experiments performed in real and simulated
scenarios are shown, and demonstrate the advantages associated
to the use of multi-level words.

I. INTRODUCTION

Long-term mobile robot operation is a field that has at-
tracted the interest of many robotics researchers [1], [2], [3].
With the increasing integration of robots in human activities,
it is essential that they have the ability to adapt to changes in
the environment. For example, a robot equipped with a laser
range finder moving inside a building must differentiate static
objects, such as walls and columns, from highly dynamic
objects, such as people in motion. It must also differentiate
both types of objects from semi-static objects, such as doors,
tables, and other furniture, which can move occasionally.

Although most of the Simultaneous Localization and Map-
ping (SLAM) techniques work well in static environments
and many techniques are able to deal with highly dynamic
environments (e.g. using methods for filtering moving objects
in the robot’s field-of-view [4]), identifying semi-static ob-
jects is a very difficult problem. This comes from the fact that
a robot cannot distinguish between static objects or dynamic
objects that are standing still during a single visit to a place.
Thus, revisiting an environment that suffered changes in
the disposition of its objects will lead to conflicting sensor
measurements, which can rather hinder the localization and
mapping process. Nonetheless, such revisiting behavior is
required in order to keep an updated map.

Some SLAM techniques deal with dynamic environments
by dividing the problem into building two distinct maps:
one for static objects and other for dynamic objects [5], [6].
However, in long-term operations, objects can move in highly
different time scales. Some authors propose a representation
with multiple maps, where each one is updated in a specific
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time scale [1], [2], others propose a single dynamic occu-
pancy grid, which stores, for each grid cell, a probabilistic
estimate of changes in the environment [7], [8]. A more
recent approach is the dynamic pose graph (DPG) [3], which
is updated whenever changes in the environment occur, by
inserting or removing nodes or connections between nodes.
An important aspect of DPG is that it maintains a history
of changes in the environment, instead of just keeping an
updated current map.

An assumption made by most long-term SLAM ap-
proaches is that the starting and ending point of the robot
trajectory are known. In situations where this is not the case
(e.g. when we simply start the robot navigation from an
unknown place), the data association problem becomes much
more difficult. A successful place recognition is fundamental
for SLAM. In fact, the occurrence of a few false positives
can fully degrade the solution [9], [10].

During the last years, various approaches for place recog-
nition in dynamic scenarios have been presented in the
literature, mostly based on computer vision and using a wide
range of different strategies to find matches, such as template
matching, feature extraction, Bag of Words, etc [11], [12],
[13]. On the other hand, place recognition based only on
laser measurements suffers from the high level of ambiguity
associated with the sensors information. For instance, a robot
that is moving inside a structured environment can obtain the
same information in multiple occasions at different places,
and thus the chance of producing false matches is large. In
cases like this, the only way to disambiguate similar regions
is by considering sequential information. Many works show
that exploring sequences of observations during the place
recognition process leads to better results than matching
single observations [14], [13].

In our previous work [15], we introduce a place recogni-
tion method based on sequences of low dimensional observa-
tions acquired by a robot using a laser range finder. Such in-
formation is obtained by computing kernel density estimates
(KDE) of the free space [16]. The method quantizes the
information into density classes, and generates simple words
to represent regions of the environment. Place recognition is
made by matching sequences of words. As shown in [15], the
method obtains good results in structured environments and
can perform fast searches for long sequences of observations,
however, it was focused on static environments.

Our new approach takes the idea of using words to
represent regions and expands it for the problem of long-
term operation. When an environment is not static, we cannot
assure that all information been observed it will always be
constant. What if a word that was just created belongs to a
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dynamic object? Then we must consider the possibility of
not finding this specific word when revisiting this specific
region. Therefore, the core of our proposal is that every time
a word is built, we also try to build alternative words that
would exist in the absence of the observed one. That is,
when building a new word, we also consider the case where
the density change was brought by a non-static object and
create a new word sequence assuming the previous density
remained present in the new word’s location.

This paper is presented as follows. Section II presents
the algorithm for building words and finding matches as
introduced in our previous work [15]. Section III details the
expansion of the method for long-term place recognition.
Section IV presents a density-based strategy that we use
for fine tuning of matches. Section V shows the results of
experiments in long-term operation. Lastly, in Section VI we
draw our conclusions and present future work.

II. REPRESENTING TRAJECTORIES USING N-GRAMS OF
SPATIAL DENSITIES

A robot equipped with a laser range-finder that moves
through structured environments obtains a series of consistent
signatures associated to spatial regions. As proposed in our
previous work [15], we can translate the sequence of such
signatures into simple words, reducing the complexity of
the data association problem. The matching of n-grams!
can be performed in an efficient way, while the matching
of the corresponding metric region using a traditional point
matching method, such as ICP, can be orders of magnitude
slower [15]. In this section, we present a brief description of
the original method, which was fully described in [15].

The first step of the algorithm is obtaining the signature
of the current spatial region by computing the local kernel
density estimate W [16] of free space in the robot position. In
order to compute this density, we maintain a local grid map,
as show in Fig. 1. The KDE ¥ of free space surrounding
point p, = (2o, yo) is computed through Eq. 1

U(po) = > s(p)K(I[p — poll), (1)

P

where p is a point in the map, K(.) is a kernel profile used
to restrict the surrounding grid cells, and s(p) is a function
that selects only points detected as free space. The idea is
that densities associated to narrow spaces, such as corridors
(e.g. point p; in Fig. 1), will be consistently smaller than
densities associated to wide spaces, such as bifurcations (e.g.
point po in Fig. 1).

Next, in order to build words, density signatures (W)
are quantized into density classes, which can be made by
uniformly partitioning the density value’s space. A word is
associated to each contiguous sequence of observations from
same density class. Words must be larger than a certain
threshold t,, otherwise the presence of any kind of noise,

'An n-gram is an ordered sequence of size n. A gram can be a word
(as in our case), a syllable, a letter, etc. n-grams are used for language
identification, string matching, among other applications.

Fig. 1: Example of spatial density values. The red circle delimits
the frontier of the local grid map, the black circle delimits the region
under the kernel influence and the yellow region corresponds to the
visited space covered by the kernel.

such as small moving obstacles, would hurt the matching
process.

Algorithm 1 shows the process of word construction.
The algorithm receives a list O of consecutive observations
from same density class, where each observation o =
{U, (z,y)} € O has a density signature (¥) and a position
(z,y) given by odometry. The information associated to O is
translated into a word composed of three syllables. The first
syllable, D, is the density class of all observations, obtained
by a quantization function g. The second syllable, S, is the
number of observations that compose the word. The last
syllable, A, is the difference of the angle between the median
and the final position of the sequence of observations, and
the angle between the initial and the median position. Finally,
we also associate the list of observations to the word to store
the location of such word in the robot trajectory.

Algorithm 1: Build Word

Input: O = [o;, - - s Om=(i+k)/2," " " ; O]
Output: w
1 w.D=q(¥,,)

2 w.S = size(O)

3 w.A=atan (7%’“ —Yom ) — atan (7?’/“” —Yoq )
Top —Toy, Lom —Loy

4 w.obs =0

5 return w

The place recognition strategy is performed by comparing
sequences of n words — or n-grams — over the entire trajec-
tory. A match between two grams is considered successful
only if there are matches between all i-th words of both
grams. In the same way, the matching between two words
considers all three syllables. While the matching considering
the density syllable is exact (i.e. either the words are in the
same density class or they aren’t), the matching considering
the size and angle syllables have pre-defined tolerances
(empirically determined as 25% and 30°, respectively).

Fig. 2 shows an example of words construction. In (a), we
can see the densities quantization, which separates the envi-
ronment in three different types of regions — corridors, cor-
ners and bifurcations. Four consecutive words are presented
in (b), along with their descriptions in (c). For instance, the
last highlighted word (B, 18, —90) corresponds to a segment
of density class B, composed of 18 observations, and an
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Fig. 2: Example of words construction. (a) Density quantization
into 3 classes. (b) Highlighting 4 consecutive words. (c) Description
of the highlighted words, and the corresponding 2-grams and 3-
grams.

(C,23,-5; A,7,0; B,18,-90)

angle variation of —90° (i.e. a turn to the right). Fig. 2(c)
also shows the 2-grams and 3-grams which can be associated
to those four words.

III. LONG-TERM PLACE RECOGNITION USING
MULTI-LEVEL WORDS OF SPATIAL DENSITIES

When the robot is in long-term operation, changes in
the environment affect the density estimates, damaging the
performance of the word matching. Fig. 3 exemplifies a case
where the robot moves alongside a door that is closed in the
first moment, (a), and open in the second moment, (b). When
this situation occurs, instead of building a single large word
to represent the region, the method will create two median-
sized words of the same density class separated by a small
word of a different density class. However, the size of the
original large word is similar to the combined size of the
three smaller words.

That being said, the core of our long-term place recogni-
tion technique is generating “corrected” words for all regions.
Basically, we start with the case where one word is wrong,
such as the open door in Fig. 3(b), and expand it to cases
where multiple consecutive words are wrong. Therefore, the
algorithm works in different levels, where the number of
levels is equal to the number, L, of words which will be
replaced to generated a single word. In detail, the algorithm
detects sequences of L+2 words, i.e. (L+2)-gram, which start
and end with the same density class but have L words in
between them with significantly different density classes.
Those sequences are then fused into a larger word having the
same density class. For instance, when the robot is visiting
the region in Fig. 3(b), the method will generate three words
for the green-blue-green segment of the trajectory, but it will
also generate a larger single green word and associate it to
the same segment.

Algorithm 2 presents the strategy for building multi-level
words, while an example of multi-level words is presented in

(a) Closed door (b) Open door

Fig. 3: Changes in the environment, such as a open/closed door,

affect the word construction. The higher density region (in blue,
pointed by the blue arrow) is only obtained when the door is open.
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Fig. 4: Example of multi-level word construction. The densities
of the first and last word of the sequence must match in order to
replace the density of the middle words and build a new word.
Arrows point to the predecessors of each word.

Fig. 4. The input for the algorithm is the list of consecutive
observations O, along with the current lists of words in
each level, WO W1t ... WL where W! = [w),wl, - w!]
with wﬁ being the j-th word of the [-th level. The first
step is building the current O-level word, adding it to the
corresponding list, and adding the previous 0-level word to
its list of predecessors words (lines 1-4). Note that a word
can have multiple predecessors (one word from each level).

Next, for each [ upper levels, we check if the last 0-level
word (w®_,) and the O-level word that is [ + 1 positions
before it (wg_ 1—s) have the same density class (line 6). For
instance, to add a new word to level 1, the words wgfl and
w?_, must have the same density class. If this is the case,
the new high-level word is computed using the concatenation
of all observations associated to the last [ + 2 words (lines
7-9). For example, in Fig. 4(b), the initial three words — of
sizes 9, 3 and 7 — generate a word of size 16 with the same
density class of the first and third ones. Fig. 4(c) shows all
possible words that can be generated in this example using
three additional levels of words.

Lastly (lines 10-12), the list of predecessors for the new
high-level word is copied from the word at 0O-level having



the same start position, given that they share the same
predecessors. Additionally, the new high-level word is added
to the predecessors list of the last 0-level word.

Algorithm 2: Building Multi-level Words
Input: O, WO, W1, .. Wl
Output: WO, W1t .. Wl
w = BuildWord(O)
WO.add(w)
n = size(W?)
wy.pred = [w;, 4]
for [ in 1...L do
if w(, ; 4D ==w)_,.D then

O’ = concat(w®_, ,.0bs, -+ ,wd_,.0bs)
w = BuildWord(O’)

W'.add(w)

m = size(W?)

win.pred = w27172.pred

w? .pred.add(wt))

3 return WO W1, .. Wl

e 0 N N T R W N -

-
N = O

-

After updating the words, we perform the place recog-
nition by searching m-grams combining those multi-level
words. The search is incremental regarding the levels of
words, i.e., at first it considers only the lowest level, then
it considers the two lowest levels, and so on. This is made
to ensure that when we check the [-th level, we will at least
obtain the matches of the [ — 1 levels.

In each iteration, we initially check for matches of the
last words of all levels. We maintain separated lists of word
occurrences to speed up the process, so that this initial
search can be made without sweeping the whole trajectory
every time. Following this one-word match, we just extend
the search visiting the predecessor’s lists of the matched
words. Given the strategy’s multi-level aspect, we may obtain
multiple matches with different n-grams at each step. For
instance, one specific n-gram can be matched simultaneously
with an n-gram composed of words from the low-level, with
another one composed of words from an upper-level, and,
most probably, with an n-gram mixing different levels.

Like in our previous work [15], we set a minimum number
of words that must be reached to accept a match. Small n-
grams sizes lead to large number of matches, but potentially
low precision, while large ones give rise to low recall.
Thus, determining good thresholds is an important aspect
to take into consideration. Moreover, we must use different
thresholds for different levels. Note that matches in the order
of 10 or 15 words are less likely to occur in the lowest level
than in upper levels, because the solution space increases in
the upper levels.

IV. FAST ADJUSTMENT OF MATCHES BY EVALUATING
RAW SPATIAL DENSITIES

The focus in [15] was on finding matches which were
topologically corrected. While this remains the core of our
current proposal, this time we also deepen the investigation
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(a) closed door

(b) open door (c) alignment

Fig. 5: Variation of raw density values (V) obtained in the regions
shown in Fig. 3. In (c), all values match well, with exception of
the small bump associated to the open door.

of translating our n-grams matches into more precise met-
ric matches. When considering a topological view, simply
matching regions regardless of size would imply that they
have the same importance, which is just adding one true
correspondence to the total. However, the impact of matching
different sizes of regions drastically influences the quality of
a final metric map.

In order to capture this type of information, we translate all
the matches of words to equivalent sets of points, which are
generated in constant intervals based on the odometry. When
a match occurs between two words, the regions represented
by those words are converted into subsets of the existing
set of points that must be connected. Finding a proper
connection between points is important, and thus we propose
a fine tuning method using raw densities values.

When we quantize the raw densities signatures to build
words, we are simplifying the information to facilitate the
matching of large trajectory segments. However, we can
still compare the raw density values of the observations
associated to the words to obtain better similarity measures.
Therefore, we search the best alignment A between two sets
of observations that minimizes the sum of the squared error
between density values.

n

. 2
arg min O(s1+itd)- ¥ — 0(s241).P) ",
—AMar<d<Apraz ; ( (sttird) (s249) )
(2)

where s1 and s2 are the starting observations of both words,
n is the size of the smallest word between the two, and A jfq0
is the maximum displacement that we are still searching.

Fig. 5 shows an example of raw density values from the
matched regions presented in Fig. 3. As we can observe,
the two curves of density values are similar, with the only
significant difference occurring in the exact position associ-
ated to the open door (as pointed by the blue arrow). Still,
considering that changes in the environment are generally
small and somewhat distant from each other, such alignment
method can obtain good results.

A:

V. EXPERIMENTS

The evaluation of our method was made using a Pioneer
3-DX mobile robot equipped with a SICK LMS 200 laser
range finder. The robot performed multiple runs starting
from different positions in the environment shown in Fig. 6,
which is an indoor environment in our university. All tests
were made considering the same configuration for generating
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Fig. 6: Environment used in the experiments.
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Fig. 7: Examples of environment configurations. (a) Configuration
used in scenario B — we change at most one door per corridor,
usually in the middle of them. (b) Configuration used in scenario
C — we change adjacent doors, doors near corners, etc.

words: kernel radius of 2.5m for estimating densities, 8
classes of densities during quantization, 25% and 30° as size
and angle thresholds during the syllables generation.

Three scenarios were chosen to evaluate the performance
of the method: one real and two simulated generated using
the MobileSim Simulator. Scenario A is the real unsuper-
vised scenario, which we do not have any control on the
dynamics of the environment, such as open/closed doors,
or people passing by the robot. Scenario B is a simulated
scenario with low changes in the environment from one
run to the others. Particularly, we only alter from the
configuration with all doors closed (as shown in Fig. 6)
to two configurations with a single open door for each
corridor (an example is shown in Fig. 7(a)). Scenario C is a
simulated scenario with frequent changes in the environment.
We alter from the closed doors configuration to other five
with multiple doors opening in the same corridor or opening
near corners (an example is shown in Fig. 7(b)). The robot
performed, in different days and hours, around 8 laps in
Scenario A, and around 40 laps in Scenarios B and C.

In a first moment, we compared the performance of single
level runs against two-levels runs. In the single level runs, we
just varied the minimum size of grams for accepting matches
(from 0 to 9). In the two-levels runs, we fixed the threshold
for the first level in different configurations (from 3 to 9)
and varied the threshold for the second level (from 0 to 18).
Fig. 8 shows plots of precision/recall for the three scenarios.
Given that our search for matches only happens in the same
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Fig. 8: Precision/Recall plots obtained in each scenario for
the single level approach and for two-levels approaches fix-
ing the threshold of the first level and varying the thresholds
of the second level.

direction of the robot trajectory, we decided to consider in the
recall calculation only matches that could be obtained in the
same direction. All results show that, with similar precision,
the recall of multi-level approaches (solid lines) is higher
than the recall of single level approaches (dotted lines).
Analyzing the individual results, all strategies obtained the
highest recalls in Scenario A. This is somewhat expected
because A is the shortest scenario, meaning that the main
variations are caused by people walking, which are small in



TABLE I: Comparisons of precision, recall and time (to
process one lap in the environment).

| Precision - Recall | Time(s)
Scenario A Scenario B Scenario C
1-level 0.905 - 0.103  0.931 - 0.106  0.964 - 0.070 2.5
2-levels | 0.910 - 0.238 0.903 - 0.274 0.912 - 0.169 11
3-levels | 0.935-0.346 0.890 - 0.308 0.913 - 0.188 38
ICP 0.048 - 0.040  0.047 - 0.011  0.219 - 0.040 96

comparison to opening and closing doors. On the other hand,
the lowest recalls were obtained in Scenario C. This was also
expected because C is the most dynamic scenario, and it has
situations that our current algorithm does not cover well,
such as density variations occurring near corners. Making an
analogy to Fig. 5, a variation occurring near corners do not
produce a density bump in the middle of a homogeneous
region, but a density bump over another existing density
bump, which is more difficult to detect.

Finally, we evaluate the running time of the proposed
method. One of the main advantages of our previous work is
its high speed to compute place recognition in all trajectory
[15]. As expected, the use of multiple levels of words to
improve recall makes the approach slower. Table I shows
the comparison among a single level run (with threshold 6),
a two-level run (with thresholds 6 and 9), a three-level run
(with thresholds 6, 9 and 12) and ICP (using 150 points
extracted from regions created at each 20 steps). Each level
that is added, reduces the speed of the method, however,
even with three levels of words the method is faster than a
traditional point matching technique such as ICP with few
points. And comparing the results of precision and recall,
the proposed method is able to obtain much higher precision
than ICP, because it can match very long segments of the
trajectory in an efficient way.

VI. CONCLUSION

In this paper we propose a strategy for long-term place
recognition by matching sequences of words built from
spatial density information. We can detect changes in the
environment by creating multiple words associated to the
same region. That means, given a density variation observed
in the robot trajectory, our method builds a word to represent
such variation and build other words to represent what
the robot should be seeing if such variation did not exist.
Experiments were made in real and simulated scenarios of an
indoor environment, and have demonstrated improvements in
the matching results.

The main contributions of the approach are:

(i) A novel representation of dynamic regions associating
words of spatial density in multiple levels;
(i) A fast strategy for finding matches in sequences of
multi-level words;
(iii) A fine-tuning adjustment of matches using raw kernel
density estimates of the free space.

We have observed that detecting changes in the environ-
ment near places with high variations of densities is still a

problem for the method. At this moment, the method only
deals with variations that are preceded and succeeded by
densities of the same class. Thus, we are studying ways of
generating alternative words for dynamic objects in situations
like that.

Finally, our current method only searches for matches in
the same direction that was visited by the robot, since it
is based on m-grams, i.e. ordered sequences of words. As
future work, we also want to generate reversed words, and
find matches using such information.
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