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Abstract— Service robots are becoming a reality across
homes. Still, the range of applications supported by such robots
remains tied to their ability to self-localize in the environment.
Man-made constructions often have a documented blueprint
which can be used as input information for robot localization
and smart home applications. However, home environments
commonly include movable objects and furniture, which can
make localization a complicated task, especially for forward-
facing horizontal rangefinders. In this paper, we present a
new and effective global localization approach for home en-
vironments which adapts the notion of free space density to
a camera pointing to the ceiling. We exploit the available
blueprint information, as well as evidence that ceiling vision can
provide robust localization information, even in the presence of
occlusions. We perform real-world experiments using a robotic
vacuum cleaner equipped with an upward-facing camera in two
different apartments across multiple trajectories and compare
the proposed method with competing approaches. Our solution
shows superior localization results using maps where neither
furniture or movable objects are not modeled.

I. INTRODUCTION

The ability to estimate the robot’s pose relative to its
environment is a key problem in mobile robotics [1]. This
work focuses particularly on the global localization problem,
where the robot should self-localize on a reference map
without any prior knowledge of its current pose. Over the
last decades many solutions were proposed, differing in the
structure of the reference map, the required sensors, and the
method used for pose estimation.

Maps can be generated using simultaneous localization
and mapping (SLAM) approaches [2]-[4]. Alternatively, they
can be manually constructed, with techniques varying from
hand-drawn approximations [5] to detailed 3D models [6],
[7], or represented by a set of images previously captured
at known locations [8]-[10]. Furthermore, as service robots
get increasingly integrated with smart home systems, new
resources become readily available. For instance, a good
user interface for such system should already include a
representation of the environment, e.g. a blueprint, point-
ing the location of connected smart devices [11]. Besides,
blueprints are widely available in the case of man-made
construction and even mandatory in some countries due to
regulatory legislation. Therefore, using blueprints for global
localization is practical, efficient and enables a wider variety
of applications inside smart systems.
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There are two main approaches for global localization:
direct pose estimation from a single measurement and re-
cursive estimation based on continuous observation. The
former includes landmark-based methods where the position
of matched features is used to estimate the robot’s actual
pose relying on fitting algorithms [2]-[4]. Similarly, image-
retrieval methods can be employed, where a training set of
images captured at known poses are used for estimation
[8]-[10]. Those methods can quickly estimate the global
position from a single measurement but are limited by per-
ceptual aliasing and will fail in environments with periodical
structures [12]. To overcome this limitation, probabilistic
approaches, such as the Monte Carlo Localization (MCL)
[13], have been widely employed [1], [6], [14], [15]. As the
robot moves, new observations are used to recursively refine
the estimated pose.

In this work, we propose an effective ceiling vision-based
localization strategy for indoor service robots equipped with
an upward facing camera. The solution is an extension of the
MCL implementation proposed in [16], which uses the Free
Space Density (FSD) observation model. Instead of using
a laser rangefinder to reconstruct the robot surroundings to
estimate the local density, we extract the ceiling boundaries
from the currently perceived image. The approach does not
require any information about furniture position, only a bare
blueprint of the walls.

We performed real-world experiments using a Neato XV-
12 vacuum cleaner, equipped with a wide-angle monocular
camera in two different apartments across multiple trajecto-
ries. For the first scenario, the blueprint is hand-made, while
for the second it is extracted directly from its construction
plan. They demonstrate the feasibility and effectiveness of
the proposed solution even in the presence of temporary
occlusions like tables or consistent differences like high
furniture.

II. RELATED WORK

One of the earliest MCL works by Dellaert et al. [13]
was also based on ceiling view. The map is a mosaic of a
museum’s ceiling constructed from previous explorations and
the observation model is a single brightness measurement of
the ceiling directly above the robot. It demonstrates that little
sensing is required for MCL convergence. Nevertheless, the
abundance and consistency of lights present in a museum
cannot be expected in home environments and, as evidenced
by our experiments, the approach is not so effective in such
environments.

Since then, many global localization approaches have
benefited from the robustness of using ceiling vision. In the
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work of Jeong et al. [3], a map of 3D ceiling landmarks
is reconstructed using an EKF-based SLAM. Relocation is
later performed by matching the current image features to
the reference map using Hough clustering. Hwang et al.
[2] extend this approach by using arbitrarily-shaped ceiling
features and significantly reduce the number of candidate po-
sitions. However, indistinguishable features commonly found
in ceilings can hinder data association, therefore limiting
their use [17].

From the explored ceiling features, Choi et al. [18] is
the closest to our approach. It also segments the ceiling
boundaries from camera images, but instead of considering
the free space area, the boundaries themselves are used as
features for mapping using an EKF-SLAM. Unfortunately, it
focuses on SLAM and does not tackle global localization.

Another line of research explores alternatives to SLAM-
based maps. Ho et al. [6] use a 3D laser scanner coupled
with a camera to manually create a detailed 3D model of the
environment. An appearance-based model is derived from it
by simulating omnidirectional views every 0.5 meters. Global
localization is later performed using a particle filter where
the weight of each particle is computed using Haar wavelets
features as similarity measurements. Mason et al. [15] uses a
similar 3D laser with camera setup, but the constructed map
is stored as a 3D textured occupancy grid. They also uses a
particle filter, but simulated views are created on demand
considering each particle pose and the Ly norm of their
difference is used as weight.

In Kitanov et al. [7], a metric 3D model is manually con-
structed using a professional computer graphics tool without
requiring previously recorded images of the environment.
Similarly to our approach, it relies only on the perceived
geometric structure, i.e., lines that are detected on both
rendered and captured images. However, they solve only pose
tracking and their map creation is far more complex than
the 2D blueprints used in our solution. Ramalingam et al.
[19] follow a similar path for pose tracking in outdoor urban
canyons. Instead of the ceiling, the skyline is extracted from
upward omnidirectional images and matched against GPU
generated skylines based on a coarse 3D model of the city.

III. VISION-BASED LOCALIZATION ON
BLUEPRINTS USING CEILING SPACE DENSITY

A. The Map

A simplified blueprint image, containing only the walls
and other relevant ceiling features, is used to initialize the
reference occupancy grid [20]. Cells that are associated with
pixels corresponding to walls are set as an obstacle while
the remaining are set as free space. Doorways are set with
low occupancy probability to delimit the correct ceiling
boundaries while still allowing the robot to cross that area.
Fig. 1 shows part of the blueprint and the resulting occupancy
grid map used in one of the experiment scenarios.

One can note that neither furniture nor movable objects
are represented in the resulting grid map. While furniture
information could be useful, their position can change,
compromising map accuracy.
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Fig. 1: Blueprint (a) and generated occupancy grid (b).

B. Ceiling Space Density

The core idea of this proposal is based on the Free Space
Density (FSD) introduced by Maffei et al. [16] for global
localization of robots equipped with a laser rangefinder.
Instead of using the surrounding free space, we compute
the Ceiling Space Density (CSD) as delimited by the ceiling
boundaries detected using an upward facing camera.

One of the advantages of using space density is that, since
the result is orientation independent, it can be precomputed
for each cell of the reference map and stored as a single
value per cell, allowing the simulated observation at each
position to be readily accessible.

The CSD VU of a region centered at cell my can be
computed using a kernel density estimate defined as follows

U(mp) =Y s(mj, mo) K (|[m; — mol|) (1)

m;

where K(.) is a kernel profile!, m; are the cells limited by
the kernel radius and

s(m;, mp) = 1, if m, is visible from mg
BT 0, otherwise

This formulation diverges from the original FSD proposal
where s(m;, mg) considers all the cells within the kernel
radius that belongs to the free space connected to myg. In
the example presented in Fig. 2b, FSD would also consider
the red cells beyond the visible ones highlighted in green.
This change was made since the ceiling can be occluded by
walls, as seen in Fig. 2a.
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(b)

Fig. 2: Ceiling view with considerable wall occlusion (a) and
its global map position with overlayed kernel area (b).

'In this work we use a Gaussian kernel profile as defined in [16].
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Fig. 3: Steps to calculate CSD from a given frame: (a) original, (b) dewarped, (c) segmented ceiling, and (d) the resulting

occupancy grid overlayed by the kernel.

C. Ceiling Extraction

In order to compute the CSD from ceiling images, we first
need to extract the ceiling boundaries. We use the method
proposed by Choi et al. [18], described in Algorithm 1.

Algorithm 1: Ceiling segmentation

1 Blur the image for reducing noise.

2 Expand the ceiling part from the center of the image,
until it reaches strong edges

3 Merge small blobs inside the ceiling part

4 If the ceiling part occupies more than A of the image,
terminate the procedure. Otherwise, go back to 2

In [18], the value of A is set to 40% as their camera has a
narrow field of view (FoV). To have correct CSD estimation,
the FoV should be sufficiently large to cover, at least, the
region occupied by the kernel. For this reason, a wide-angle
lens with a wider FoV was used, which leads to smaller A
values. In our case, the FoV was about 180° and A was set
to 4%. Fig. 3a and b show respectively the original captured
image and the result after perspective correction.

Once the ceiling is segmented (Fig. 3c), it is flipped
vertically and horizontally, to convert between image and
world coordinates, and rotated using the orientation estimated
by odometry. This last step could be omitted since it is later
nulled by computing the a}°%* used in equation 5 as the
difference between the gradient and odometry orientation.
Nevertheless, the rotation was maintained to keep consis-
tency with original FSD formulation. Finally, the resulting
image is converted to an occupancy grid using a scale factor
that is dependent on the camera intrinsic parameters and the
cell size used on the reference map. The final map, overlaid
by the corresponding kernel, can be seen in Fig. 3d.

Note that even if the ceiling is occluded by nearby objects,
such as the table and chair shown in the left of Fig. 3a, the
CSD is correctly estimated since there is no overlap between
the kernel region and the occlusion. A smaller kernel means
that the process is more robust against occlusions, but at
the same time it can create large areas with homogeneous
density that cause perception aliasing problems.

D. Proposed global localization method

Monte Carlo Localization (MCL) is a recursive Bayes
filter that estimates the posterior distribution of robot poses
conditioned on sensor data [1]. The robot pose is represented
by a set of weighted particles that approximates such dis-
tribution without imposing restrictions on its form, while,
at the same time, efficiently tracking multiple hypotheses
— a prerequisite for global localization. At each iteration,
particles are updated according to the motion model and
weighted based on the observation model.

In vision-based methods, the observation model should
determine the likelihood of a particle to perceive the current
camera image given its pose on the map. In our approach,
this likelihood is achieved by comparing the CSD value
at particle positions against the perceived CSD from the
extracted ceiling. This means that after ceiling extraction and
local CSD computation, the particle weighting boils down to
a couple of scalar comparisons which is very efficient, even
when using many particles.

The weight w(py]) for the i-th particle at step ¢ is com-
puted using two factors: one based on the density estimates,
fu (P, and other based on orientation estimates, f. (pl").

w(pl”) = fo @) - fa(plh) 3)

The first term represent the similarity between the ob-
served CSD, W(m/°*!), and the precomputed value at

particle position, \I/(mgz] ),

min(| ¥ (m;*") — ¥(m)| , Av)

Ay ’
where Ay is the difference between the maximum and
minimum CSD found in the reference map. Particles for
which the observation error is greater than Ay, will have
weight equal to zero and are later discarded.

Similarly to [16], the gradient of the scalar CSD field is
used to estimate the likelihood of particles orientation. First,
we compute the angle difference, a{"b"t, between the robot
orientation given by odometry and the gradient direction of
the CSD field surrounding the robot. Likewise, we compute

fo@i) = 1.0 - )



the angle difference, ay], associated with the ¢-th particle
using the CSD field of the reference map. The orientation
weight is then given by the similarity between the two.

robot (4]
o - Qy

falph) =10 - ®)

Unfortunately, this information becomes less reliable when
the gradient direction changes abruptly and the orientation
weight fa(pgz]) cannot be used in those cases. Due to
the smooth nature of the novel density proposal, direction
changes will be drastic mainly near low intensity gradient
regions. When the perceived gradient intensity is smaller
then a given threshold e, the orientation information is not
considered, i.e. fo(pl) = 1.

IV. EXPERIMENTAL RESULTS

To demonstrate the feasibility and effectiveness of our
approach, we execute a sequence of global localization tasks,
using a Neato-XV 12 robotic vacuum cleaner?, coupled with
a wide-angle lens camera pointing to the ceiling.

We compare the proposed approach (CSD) with the orig-
inal MCL from Dellaert et al. [13], the original laser-based
approach [16] (FSD), along with pure motion to evaluate the
level of contribution of the observation step with respect to
the overall uncertainty reduction.

All approaches were tested in two different scenarios,
corresponding to two different apartments. For each, the
robot is manually moved through three different trajectories
(see Figs. 4a-b) while recording camera frames, odometry
data, and laser readings. The final position of each run is
manually measured relative to the walls, later converted to
a global position in the map and used as ground-truth. The
global localization is performed in real time, but the tests
are repeated offline due to the probabilistic nature of the
method. Each recorded path is executed 10 times and the
results presented here are the mean of those executions. In
all experiments, the number of particles is set to 10.000.

After each resampling step, we use the EM algorithm to
estimate the mean and covariance of the particle’s position
as if they represented an unimodal 2D Gaussian distribution.
The area within 2 standard deviations (95%) is then used as
uncertainty measure and is represented as oriented ellipses in
Fig. 5. Even if the distribution is multi-modal before conver-
gence, this approach will result in high uncertainty and can
be used to determine the convergence speed of the method.
Note that convergence alone does not implicate successful
operation and should be considered together with the final
position error when determining localization effectiveness.

Prior to the execution of the experiments, the CSD and
FSD fields of each environment were precomputed using
available blueprints (see Figs. 4e-h). For both scenarios, a
kernel radius of 1.6m provided a good balance between ro-
bustness and effectiveness. To execute Dellaert et al. [13], the
mosaic from the ceiling of each apartment, Figs. 4c-d, were
manually constructed using captured images. The structural
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Fig. 4: Trajectories used in the experiments (a-b), ceiling
mosaics used for Dellaert [13] (c-d) and precomputed density
fields for CSD (e-f) and FSD [16] (g-h).
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(a) Step 19
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Fig. 5: Examples of particles distribution (red dots) during
trajectory A. The mean position is represented by the yellow
dot and the uncertainty by the surrounding ellipse.

information from the blueprints is also encoded in the mosaic
by setting the walls as transparent pixels that the particles
cannot go through.

A. Results

Table I presents final localization results for pure motion,
Dellaert et al. [13], original laser-based FSD [16] and pro-
posed method (CSD). Results from the first apartment are
shown in trajectories A-C, while the results for the second
apartment are shown in trajectories D-F. The uncertainty of
the particle filter, considering the average over the 10 runs,
for each method and trajectory is displayed in Fig. 6.

Trajectory A B C D E F
lenght 152m 129m 10.7m  9.1m 8.4m 122m
Method Error (m)

. © 064 ; ; ; - 0.36

Motion o 006 ; ; ; . 0.08

, u 062 024 096 ; g 0.48
Dellaert [13] " 000 004 006 ; - 0.04
9 ; ; : 300 114 344

FSD il ) ) ; 140 0.08 006
sD 4 005 024 016 030 084 022

o 002 002 002 002 010 003

Method Uncertainty (m?)

Motion 4 694 3290 9663 6858 7988  17.65

o L1320 25 411 557 278

] w707 099 202 7505 7091  2.11

Dellaert [13] " 377 g0 107 638 1393 085

@ 3318 2740 2843 552 041 046

FSDII6L 0 3644 3949 2497 1513 015 007

sD L 030 034 037 064 124 045

o 002 005 001 002 018 003

TABLE I: Experiment Results. The final error was not
calculated when the final uncertainty was greater than 20m?

Using an Intel Core 2 Duo clocked at 1.66GHz, the mean
execution time for the perception step took about 94ms,
including image de-warping, ceiling segmentation, and CSD
calculation. This time is independent of the number of
particles: once the perceived CSD is computed, each particle
weight resumes to few arithmetic operations. For the 10.000
particles used in the experiments, the mean update time
was about 127ms, including both weighting and resampling
steps. As a comparison, the observation time using FSD with
laser is about 4ms, excluding local map reconstruction, and
for Dellaert was 26ms. Even though they are faster than the

proposed method, their final error in the tested scenarios is
generally much larger (considering only the cases that they
converge to a solution), as we show next.

As seen in Table I, trajectory A presents the smallest final
error for CSD and in fact, it is the only trajectory that finishes
in a room where the ceiling matches the blueprint. All other
final positions are in rooms with high furniture that blocks
part of the ceiling. In trajectory E, the worst result, the final
position is very close to the celling unevenness that crosses
the large room of the second apartment, that can be seen
in Fig. 4c but is not modeled in Fig. 4f-g. Even in the
presence of such challenges, the proposed solution always
converged, sometimes displaced by a constant factor due to
such disparities. We could have added more information to
the reference map to improve the results, but we wanted to
test the limits of what is achievable using bare blueprints.
This also demonstrates the robustness of the method and
that the ceiling view is indeed a good approximation of the
blueprint in real-world examples.

For trajectories B-E, pure motion never leads to conver-
gence, while the proposed approach and Dellaert et al.’s
[13] present superior results, discarding the possibility of
motion as the only responsible for the convergence. However,
note that CSD converges in all trajectories, while Dellaert
et al. [13] diverges in trajectories D-E. Besides, apart from
trajectory B, CSD presents superior means and standard
deviations, for both error and uncertainty, in all scenarios.
Convergence and the transition from global localization to
tracking can be clearly observed in Figs 6 a-f, where in
all trajectories but B, CSD converges faster. Trajectory B
was specially designed for Dellaert et al. [13], passing under
the two lights of the central room. Still, we highlight that
lights are normally over tables or other furniture that require
illumination and, in fact, for trajectory B we had to displace
the dinning table, so the robot could pass under the light.
Also, not all lights will be turned on all the time, which can
also lead to incorrect associations.

Regarding FSD, it diverged and the filter was restarted
several times in A-C and F, while in D it diverged and never
recovered, converging only in E. This is expected since FSD
relies on a forward-facing laser range finder and no furniture
is shown in the map. Even if the comparison might be unfair,
it helps illustrate the limitations of methods that require
more detailed maps for global localization. To achieve an
improved performance with FSD, another map, considering
every single piece of furniture in the environment, should be
used — which is less practical than mapping only the walls.

V. CONCLUSION

In this paper, we present a novel vision-based global
localization approach for indoor service robots. Experimental
results using a robotic vacuum cleaner in different scenarios
demonstrate the robustness and feasibility of the method
when compared to competing approaches. The proposed
method takes advantage of the notion of free space density,
adapted to data obtained from a camera pointing to the
ceiling. The method does not require any precomputed 3D
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space model, which is fundamental for many approaches
relying on feature matching or simulated view generation,
as mentioned in Section II. It also does not require the
position of existing furniture, instead, it works only with
bare blueprints.

Currently, the proposed approach requires uniform ceiling
colors and may not work if a large part of the ceiling
view is occluded for a long period during the localization
process — such limitation must be taken into consideration
mainly if such occlusions happen before the tracking phase.
However, we highlight that during the tests the robot passed
nearby tables and other objects, which momentarily caused
large occlusions in the robot’s view, but the algorithm still
presented good results.

In the future, we plan to study different forms of ceiling
segmentation, focusing on non-uniform ceiling scenarios to
increase the spectrum of environments where the approach
can be used. In addition, we plan to test and combine differ-
ent kernel density estimates, to determine if the convergence
times of the algorithm can be improved even further.
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