Structure-based ASCII Art
Eduardo Magnus Lazuta'!, Rayan Raddatz de Matos'

"nstituto de Informatica — Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 — 91.501-970 — Porto Alegre — RS — Brasil

{emlazuta, rayan.raddatz}@inf.ufrgs.br

Abstract.

1. Introducao

A incapacidade de computadores antigos de realizar representacdes gréaficas sofisticadas
deu origem a um novo tipo de arte digital: Arte em ASCIIL. Essa forma de expressao
artistica, chamada de ASCII Art, utiliza o padrao de caracteres ASCII [Cerf 1969] para
recriar imagens utilizando simbolos textuais. Apesar do nome popular ASCII Art, outros
padroes de texto, como UTF-8, sdo utilizados atualmente para permitir artes mais detalha-
das e expressivas. Além disso, mesmo com a modernizagdo dos sistemas computacionais
e o avancgo das representacdes graficas nesses sistemas, a ASCII Art continua popular,
principalmente em comentérios de plataformas de video e streaming.

Esta forma de arte busca criar ou replicar imagens por meio de duas principais
abordagens: com base no tom ou na estrutura. Enquanto a ASCII Art com base no tom
busca mimetizar os tons presentes na imagem com diferentes caracteres representando
diferentes intensidades, a ASCII Art com base na estrutura busca compreender e adaptar
a estrutura da imagem para poder transportar essa estrutura para os caracteres computa-
cionais. Ao pensar de forma extrema, exemplos de ASCII Art baseada em estrutura sao:
:) (sorriso), T_T (choro) e S2 ou <3 (coragdes). Representacdes essas utilizadas nor-
malmente em aplicativos de mensagens, as quais buscam expressar a estrutura de formas
ou feicoes visuais através de caracteres textuais. Assim, a utilizacdo de ASCII Art base-
ada em estrutura permite criar representacoes fidedignas com uma menor quantidade de
caracteres do que a baseada em tom.

Nesse trabalho, buscamos reproduzir os resultados obtidos em [Xu et al. 2010].
Esse trabalho introduz uma nova métrica chamada ” Alignment-Insensitive Shape Simila-
rity”’que, diferente das métricas da época, tolerava o desalinhamento das formas enquanto
levava em conta diferencas na posicao, orientacdo e escala. Além disso, eles propdem a
criacdo da ASCII Art baseada em estrutura como uma otimiza¢do que visa minimizar a
dissimilaridade de formas e deformacao

Disponibilidade de Software e Dados. Nossos resultados sdo publicos. Disponi-
bilizamos o material aqui mostrado através de um repositério puiblico do GitHub em
https://github.com/rddtz/ascii-at. INOSSO material complementar contém o cddigo fonte deste re-
latério, bem como o software e as imagens necessarias para recriar os exemplos. Também
incluimos instru¢des para executar a aplicagao.

2. Fundamentacao Tedrica e Métodos Utilizados

2.1. Histograma Log-Polar

Trata-se de um descritor robusto escolhido especificamente pela sua tolerancia a desali-
nhamentos. Diferente dos histogramas convencionais cartesianos, este método emprega
um sistema de coordenadas polares onde os bins (compartimentos de acumulacdo) sio
particionados uniformemente no espago logaritmico.

O histograma log polar é um descritor altamente sensivel a posi¢des de pixels
préximos ao centro (foco), mas torna-se progressivamente tolerante a variagdes espaciais
conforme a distancia aumenta. Além disso, ao acumular a densidade de pixels dentro de
cada bin, o método torna-se inerentemente insensivel a pequenas perturbagdes de forma,
permitindo que caracteres ASCII representem fielmente a estrutura da imagem mesmo
com pequenas transformacdes de escala ou posi¢ao.

Para gerar um descritor robusto com o histograma log-polar é preciso amostrar N
pontos da imagem. Ao final do processo, os N histogramas log-polares sao concatenados,
formando o descritor final utilizado para representar a imagem.

2.2. Simulated Annealing

Para obter uma melhor classificagdo da imagem, € necessario permitir pequenas
deformagdes controladas na representacao atual. Para isso, utiliza-se a meta-heuristica Si-
mulated Annealing, que admite novas solugdes de forma probabilistica. Quando a solucao
gerada ndo € melhor que a atual, ela ainda pode ser aceita com probabilidade:

p=e ",

onde 7" € a temperatura da iteragdo e A € a diferenca entre a energia da solucio
atual e a da nova solucao.

A meta-heuristica opera da seguinte forma: para cada temperatura, sao realizadas
N iteracoes, nas quais uma nova solucao é gerada por meio das deformacdes local e global
da imagem, buscando reduzir o valor da energia total. Ao final desse ciclo de /N iteragdes,
a temperatura € atualizada conforme a equacao:

T =0.2t, %7,

onde ¢, € o erro médio inicial e ¢ corresponde ao indice da iteragao.

O critério de parada do processo ocorre quando nao ha reducido na energia da
solucdo ao longo de /V itera¢des consecutivas em uma mesma temperatura, indicando que
o algoritmo convergiu para uma configuragado estavel.

Gerando a nova solugao

2.3. Funcao Objetivo

A func¢do objetivo mede a qualidade final do resultado combinando dois fatores: a dis-

similaridade visual entre cada célula da imagem e o caractere escolhido (D:5%), e a
deform

deformagado aplicada a c€lula (D;). Ela é definida como:

1 & AISS deform
E= }ZDJ' - Dj

Jj=1

onde m € o nimero total de células e /' é o nimero de células ndo vazias. Quando
ndo ha deformagio (D;lef "™ = 1), a energia depende apenas da semelhanga visual. Como
a féormula € normalizada por K, valores de F podem ser comparados entre diferentes
resolugdes de texto: quanto menor o valor de £, melhor e mais agraddvel € o resultado

visual.

3. Implementacao

Implementamos nossa solucao utilizando a linguagem de programacdo python por sua
simplicidade e boa integracdo com a biblioteca OpenCV. Essa se¢do destaca e descreve
alguns pontos especificos da implementacao.

3.1. Workflow

A Figura 1 sintetiza o fluxo de trabalho padrdo da aplicacdo. Recebemos como entrada
uma imagem em um formato qualquer. A partir disso “esquelitizamos”e vetorizamos a
imagem. O processo entio segue para a otimizac¢ao, onde buscamos minimizar a fung¢io
objetivo. Quando alcangamos um resultado satisfatério com a otimizagao, passamos entao
para a classificacdo, onde designamos os caracteres que irdo compor a imagem de saida.

classificagdo
skeletonize e vetoriza

imagem de entrada otimizagdo

Figura 1. Workflow do método

3.2. Vetorizacao da Imagem

O artigo referéncia ndo deixa claro como € feita a vetorizagao das imagens, e faz alusdo
ao fato de que a entrada ¢ composta pelos vetores que compdem a imagem alvo. Essa

simplificagdo ndo foi integrada ao nosso trabalho. Ao invés disso, adicionamos uma forma
de vetorizagdo de imagens genéricas através de dois diferentes modos: Utilizando ou a
biblioteca OpenCV?2 ou uma implementa¢do manual baseada no algoritmo DFS.

Primeiro comeg¢amos esqueletizando a imagem através da funcdo skeletonize
da biblioteca skimage. Essa funcdo faz com que todas as linhas da imagem tenham ape-
nas 1 pixel de largura. Partindo dessa imagem esqueletizada, o método de vetorizagdo que
utiliza OpenCV?2 faz uso da funcio findContours. Essa fun¢do contorna todas as linhas
da imagem, e, como isso gera linhas duplicadas, utilizamos apenas metade dos pontos
gerados. O método que utiliza o DFS funciona criando linhas ao ligar os pontos vizinhos.
Ao termos as coordenadas de todos os pixels que formam uma determinada linha nés uti-
lizamos a fun¢do approximate_polygon da biblioteca skimage para gera uma linha
através desses pontos.

3.3. Otimizacao e Geracao da Imagem

Algumas das formulas utilizadas na otimizagdo e classificagdo ndo sao explicitamente de-
talhadas no artigo referéncias, ou muitas vezes sao expostas de forma ambigua. A parte da
classificacdo se mostrou simples quando comparado com a otimizagdo. Tentamos seguir
as formulas descritas no artigo a risca, entretanto para a parte da otimizagao algumas eta-
pas nao foram completamente esclarecidas no artigo referéncia, principalmente ao se tra-
tar da restri¢ao de acessibilidade e do cdlculo da energia. Isso dificultou a implementagao,
e foi necessdrio ir atrds de cédigos referéncias e outras implementacdes e discussoes sobre
o assunto em busca de entender os métodos mencionados. Uma estratégia que se mostrou
interessante para melhorar a acuidade visual dos resultados foi diminuir a quantidade de
caracteres disponiveis, utilizando apenas algumas letras e simbolos selecionados para a
criacdo da imagem. Por fim, a otimizacdo se mostrou uma etapa custosa, principalmente
para nossa implementacdo em python, por isso ndo foram seguidas a riscas condi¢des de
paradas estabelecidas no artigo referéncia.

4. Resultados

A Figura 2 mostra alguns resultados obtidos, o tamanho final da imagem é um grande
fator da qualidade. O processo de otimizagdao demonstrou pouco resultado em razao do
grande tempo de computacdo. Entretanto mesmo sem aplicar a otimizacdo o resultado
final j4 € final agradavel, como podemos ver nos exemplos.

5. Conclusao e Trabalhos Futuros

Conseguimos observar que os resultados gerados pela aplicacdo sao satisfatorios mesmo
antes da aplicacdo da otimiza¢gdo. Um fato que possa ter impedido a eficdcia da otimizacdo
seja a alta quantidade de pontos gerados pelo processo de vetorizacdo automética. Me-
lhorias futuras podem focar em melhorar o processo de vetorizacdo e otimizacgao, além de
poder utilizar métodos mais atuais com redes neurais para classificacdo dos caracteres.

Referéncias
Cerf, V. G. (1969). Ascii format for network interchange. RFC 20. https://www.
rfc-editor.org/rfc/rfc20.html.

Xu, X., Zhang, L., and Wong, T.-T. (2010). Structure-based ascii art. ACM Trans. Graph.,
29(4).

UQ2p8s s y-85" " S8Y-QQ.

(a) Livro Original
nas

(c) Gato Orignal (d) Gato ASCII com 100
colunas

(e) Gato ASCII com 200 colunas

Figura 2. Resultados da transformagao de imagens para ASCIl sem otimizacao.

