
Structure-based ASCII Art

Eduardo Magnus Lazuta1, Rayan Raddatz de Matos1

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brasil

{emlazuta,rayan.raddatz}@inf.ufrgs.br

Abstract.

1. Introdução

A incapacidade de computadores antigos de realizar representações gráficas sofisticadas
deu origem a um novo tipo de arte digital: Arte em ASCII. Essa forma de expressão
artı́stica, chamada de ASCII Art, utiliza o padrão de caracteres ASCII [Cerf 1969] para
recriar imagens utilizando sı́mbolos textuais. Apesar do nome popular ASCII Art, outros
padrões de texto, como UTF-8, são utilizados atualmente para permitir artes mais detalha-
das e expressivas. Além disso, mesmo com a modernização dos sistemas computacionais
e o avanço das representações gráficas nesses sistemas, a ASCII Art continua popular,
principalmente em comentários de plataformas de vı́deo e streaming.

Esta forma de arte busca criar ou replicar imagens por meio de duas principais
abordagens: com base no tom ou na estrutura. Enquanto a ASCII Art com base no tom
busca mimetizar os tons presentes na imagem com diferentes caracteres representando
diferentes intensidades, a ASCII Art com base na estrutura busca compreender e adaptar
a estrutura da imagem para poder transportar essa estrutura para os caracteres computa-
cionais. Ao pensar de forma extrema, exemplos de ASCII Art baseada em estrutura são:
:) (sorriso), T T (choro) e S2 ou <3 (corações). Representações essas utilizadas nor-
malmente em aplicativos de mensagens, as quais buscam expressar a estrutura de formas
ou feições visuais através de caracteres textuais. Assim, a utilização de ASCII Art base-
ada em estrutura permite criar representações fidedignas com uma menor quantidade de
caracteres do que a baseada em tom.

Nesse trabalho, buscamos reproduzir os resultados obtidos em [Xu et al. 2010].
Esse trabalho introduz uma nova métrica chamada ”Alignment-Insensitive Shape Simila-
rity”que, diferente das métricas da época, tolerava o desalinhamento das formas enquanto
levava em conta diferenças na posição, orientação e escala. Além disso, eles propõem a
criação da ASCII Art baseada em estrutura como uma otimização que visa minimizar a
dissimilaridade de formas e deformação

Disponibilidade de Software e Dados. Nossos resultados são públicos. Disponi-
bilizamos o material aqui mostrado através de um repositório público do GitHub em
https://github.com/rddtz/ascii-art. Nosso material complementar contém o código fonte deste re-
latório, bem como o software e as imagens necessárias para recriar os exemplos. Também
incluı́mos instruções para executar a aplicação.



2. Fundamentação Teórica e Métodos Utilizados
2.1. Histograma Log-Polar
Trata-se de um descritor robusto escolhido especificamente pela sua tolerância a desali-
nhamentos. Diferente dos histogramas convencionais cartesianos, este método emprega
um sistema de coordenadas polares onde os bins (compartimentos de acumulação) são
particionados uniformemente no espaço logarı́tmico.

O histograma log polar é um descritor altamente sensı́vel a posições de pixels
próximos ao centro (foco), mas torna-se progressivamente tolerante a variações espaciais
conforme a distância aumenta. Além disso, ao acumular a densidade de pixels dentro de
cada bin, o método torna-se inerentemente insensı́vel a pequenas perturbações de forma,
permitindo que caracteres ASCII representem fielmente a estrutura da imagem mesmo
com pequenas transformações de escala ou posição.

Para gerar um descritor robusto com o histograma log-polar é preciso amostrar N
pontos da imagem. Ao final do processo, os N histogramas log-polares são concatenados,
formando o descritor final utilizado para representar a imagem.

2.2. Simulated Annealing
Para obter uma melhor classificação da imagem, é necessário permitir pequenas
deformações controladas na representação atual. Para isso, utiliza-se a meta-heurı́stica Si-
mulated Annealing, que admite novas soluções de forma probabilı́stica. Quando a solução
gerada não é melhor que a atual, ela ainda pode ser aceita com probabilidade:

p = e−∆/T ,

onde T é a temperatura da iteração e ∆ é a diferença entre a energia da solução
atual e a da nova solução.

A meta-heurı́stica opera da seguinte forma: para cada temperatura, são realizadas
N iterações, nas quais uma nova solução é gerada por meio das deformações local e global
da imagem, buscando reduzir o valor da energia total. Ao final desse ciclo de N iterações,
a temperatura é atualizada conforme a equação:

T = 0.2 ta c
0.997,

onde ta é o erro médio inicial e c corresponde ao ı́ndice da iteração.

O critério de parada do processo ocorre quando não há redução na energia da
solução ao longo de N iterações consecutivas em uma mesma temperatura, indicando que
o algoritmo convergiu para uma configuração estável.

Gerando a nova solução

2.3. Função Objetivo
A função objetivo mede a qualidade final do resultado combinando dois fatores: a dis-
similaridade visual entre cada célula da imagem e o caractere escolhido (DAISS

j ), e a
deformação aplicada à célula (Ddeform

j ). Ela é definida como:



E =
1

K

m∑
j=1

DAISS
j ·Ddeform

j

onde m é o número total de células e K é o número de células não vazias. Quando
não há deformação (Ddeform

j = 1), a energia depende apenas da semelhança visual. Como
a fórmula é normalizada por K, valores de E podem ser comparados entre diferentes
resoluções de texto: quanto menor o valor de E, melhor e mais agradável é o resultado
visual.

3. Implementação
Implementamos nossa solução utilizando a linguagem de programação python por sua
simplicidade e boa integração com a biblioteca OpenCV. Essa seção destaca e descreve
alguns pontos especı́ficos da implementação.

3.1. Workflow

A Figura 1 sintetiza o fluxo de trabalho padrão da aplicação. Recebemos como entrada
uma imagem em um formato qualquer. A partir disso ”esquelitizamos”e vetorizamos a
imagem. O processo então segue para a otimização, onde buscamos minimizar a função
objetivo. Quando alcançamos um resultado satisfatório com a otimização, passamos então
para a classificação, onde designamos os caracteres que irão compor a imagem de saı́da.

imagem de entrada

skeletonize e vetoriza 

otimização

classificação

Figura 1. Workflow do método

3.2. Vetorização da Imagem

O artigo referência não deixa claro como é feita a vetorização das imagens, e faz alusão
ao fato de que a entrada é composta pelos vetores que compõem a imagem alvo. Essa



simplificação não foi integrada ao nosso trabalho. Ao invés disso, adicionamos uma forma
de vetorização de imagens genéricas através de dois diferentes modos: Utilizando ou a
biblioteca OpenCV2 ou uma implementação manual baseada no algoritmo DFS.

Primeiro começamos esqueletizando a imagem através da função skeletonize
da biblioteca skimage. Essa função faz com que todas as linhas da imagem tenham ape-
nas 1 pixel de largura. Partindo dessa imagem esqueletizada, o método de vetorização que
utiliza OpenCV2 faz uso da função findContours. Essa função contorna todas as linhas
da imagem, e, como isso gera linhas duplicadas, utilizamos apenas metade dos pontos
gerados. O método que utiliza o DFS funciona criando linhas ao ligar os pontos vizinhos.
Ao termos as coordenadas de todos os pixels que formam uma determinada linha nós uti-
lizamos a função approximate polygon da biblioteca skimage para gera uma linha
através desses pontos.

3.3. Otimização e Geração da Imagem
Algumas das fórmulas utilizadas na otimização e classificação não são explicitamente de-
talhadas no artigo referências, ou muitas vezes são expostas de forma ambı́gua. A parte da
classificação se mostrou simples quando comparado com a otimização. Tentamos seguir
as fórmulas descritas no artigo a risca, entretanto para a parte da otimização algumas eta-
pas não foram completamente esclarecidas no artigo referência, principalmente ao se tra-
tar da restrição de acessibilidade e do cálculo da energia. Isso dificultou a implementação,
e foi necessário ir atrás de códigos referências e outras implementações e discussões sobre
o assunto em busca de entender os métodos mencionados. Uma estratégia que se mostrou
interessante para melhorar a acuidade visual dos resultados foi diminuir a quantidade de
caracteres disponı́veis, utilizando apenas algumas letras e sı́mbolos selecionados para a
criação da imagem. Por fim, a otimização se mostrou uma etapa custosa, principalmente
para nossa implementação em python, por isso não foram seguidas a riscas condições de
paradas estabelecidas no artigo referência.

4. Resultados
A Figura 2 mostra alguns resultados obtidos, o tamanho final da imagem é um grande
fator da qualidade. O processo de otimização demonstrou pouco resultado em razão do
grande tempo de computação. Entretanto mesmo sem aplicar a otimização o resultado
final já é final agradável, como podemos ver nos exemplos.

5. Conclusão e Trabalhos Futuros
Conseguimos observar que os resultados gerados pela aplicação são satisfatórios mesmo
antes da aplicação da otimização. Um fato que possa ter impedido a eficácia da otimização
seja a alta quantidade de pontos gerados pelo processo de vetorização automática. Me-
lhorias futuras podem focar em melhorar o processo de vetorização e otimização, além de
poder utilizar métodos mais atuais com redes neurais para classificação dos caracteres.

Referências
Cerf, V. G. (1969). Ascii format for network interchange. RFC 20. https://www.
rfc-editor.org/rfc/rfc20.html.

Xu, X., Zhang, L., and Wong, T.-T. (2010). Structure-based ascii art. ACM Trans. Graph.,
29(4).



(a) Livro Original (b) Livro ASCII com 100 colu-
nas

(c) Gato Orignal (d) Gato ASCII com 100
colunas

(e) Gato ASCII com 200 colunas

Figura 2. Resultados da transformação de imagens para ASCII sem otimização.


