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Mudancas desde a ultima etapa

» Focamos apenas no TensorFlow

Adicionamos outro modelo menor (EfficientNetBO0)

Focamos em entender o tempo de treino e descartamos
meétricas secundarias

Mudamos o dataset para o TinylmageNet-200

Mudamos o hardware (downgrade)



Resultados anteriores
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Fenémeno Observado

» Degradacao de performance (aumento do tempo por
eépoca) ao adicionar novos workers.



Causa Técnica

O treinamento distribuido sincrono exige que todos os
nos atualizem os pesos simultaneamente.

» A operacao de AllReduce (soma de gradientes) trafega
dados pela rede a cada batch, assim, a laténcia de
comunicagao superou o ganho do paralelismo



Custom Training Loop



Estratégia

« Utilizacdo de um Custom Training Loop.



Técnica Aplicada

* Implementagc&o de acumulacao de gradientes.

« Sincronizacao a cada 4 batches.



Impacto no Desempenho

« Aumenta o batch size efetivo antes de disparar a
sincronizagao.

* Melhora a razdo Computagdao/Comunicacéo, reduzindo o
trafego de rede e destravando o escalonamento.



Reproducibilidade e Ambiente de Testes



Limitacdo do GNU Guix

« A base oficial distribui estritamente Software Livre.

* Incompatibilidade com drivers proprietarios essenciais
(NVIDIA CUDA Toolkit e cuDNN).
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Restricao de Infraestrutura

 Impossibilidade de adicionar canais ndo-oficiais (nonguix)
no ambiente PCAD.
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Solucao Adotada

» Uso de Python Virtual Environment (venv).

* |solamento de versdes via pip garante reprodutibilidade
sem violar restricdes de licenciamento de drivers de GPU.
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Hardware

Anteriormente estavamos utilizando maquinas da particao Tupi, por razdes
de alta concorréncia mudamos para a particao Poti.

» Hardware anterior: Intel(R) Core(TM) i9-14900KF e NVIDIA GeForce
RTX 4090

» Hardware UTILIZADO: Intel(R) Core(TM) i7-14700KF e NVIDIA
GeForce RTX 4070

Tivemos alguns problemas como a configuragéo da rede da poti4 e
quedas repentinas da poti2 que atrasaram os experimentos.
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Projeto Experimental



Tipos de treinamento

Executamos dois tipos de treinamento:

 "sync" -> Sincronismo total com model.fit ()

e "ctl" -> Sincronismo a cada 4 batches com Custom
Training Loop
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Modelo

Escolhemos além do ResNet50 com ~25.6M parametros um
modelo menor: EfficientNetB0 com ~5.3M parametros.
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Outros fatores

- Batch size: 32, 64, 100
* Quantidade de nodos: 1,2e 3
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Replicacoes

« 2x2x3x3 = 36 configuracoes
» Cada uma foi replicada 5 vezes.

+ Total de 180 execucodes!
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Resultados



Aglomerado final dos dados
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Resultados por batch

B EfficientNetBO [l ResNet50

Training Time [Minutes]

ctl

sync

150 1

100 -

n
o
1

o
1

L]

®eP,

>

Q
S >
Batch Size

>

T
S
S

19



Resultados por numero de nodos
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Modelagem



Nosso modelo linear
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Nosso modelo quadratico
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Conclusao



Conclusao

« O tamanho do modelo assim como a rede é um fator
critico para o treino distribuido sincrono.

» Mesmo com uma rede de baixo throughput é possivel
obter ganhos através de uma boa configuragao do
ambiente e do modelo.
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Trabalhos futuros

Prever o overhead de comunicagéo baseado no tamanho do
modelo e das condi¢des da rede.
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