
Performance Evaluation of Tensorflow Parallel Strategies
for Deep Learning Training on HPC Clusters

Kenichi Brumati, Marcelo Cardoso Oliveira Gulart, Rayan Raddatz de Matos

INF01146 – Comp. Sys. Perf. Analysis – 2025/2



Agenda

Recapitulação

Custom Training Loop

Reproducibilidade e Ambiente de Testes

Projeto Experimental

Resultados
Modelagem

Conclusão

2



Recapitulação



Mudanças desde a última etapa

• Focamos apenas no TensorFlow

• Adicionamos outro modelo menor (EfficientNetB0)

• Focamos em entender o tempo de treino e descartamos
métricas secundárias

• Mudamos o dataset para o TinyImageNet-200

• Mudamos o hardware (downgrade)

3



Mudanças desde a última etapa

• Focamos apenas no TensorFlow

• Adicionamos outro modelo menor (EfficientNetB0)

• Focamos em entender o tempo de treino e descartamos
métricas secundárias

• Mudamos o dataset para o TinyImageNet-200

• Mudamos o hardware (downgrade)

3



Mudanças desde a última etapa

• Focamos apenas no TensorFlow

• Adicionamos outro modelo menor (EfficientNetB0)

• Focamos em entender o tempo de treino e descartamos
métricas secundárias

• Mudamos o dataset para o TinyImageNet-200

• Mudamos o hardware (downgrade)

3



Mudanças desde a última etapa

• Focamos apenas no TensorFlow

• Adicionamos outro modelo menor (EfficientNetB0)

• Focamos em entender o tempo de treino e descartamos
métricas secundárias

• Mudamos o dataset para o TinyImageNet-200

• Mudamos o hardware (downgrade)

3



Mudanças desde a última etapa

• Focamos apenas no TensorFlow

• Adicionamos outro modelo menor (EfficientNetB0)

• Focamos em entender o tempo de treino e descartamos
métricas secundárias

• Mudamos o dataset para o TinyImageNet-200

• Mudamos o hardware (downgrade)

3



Resultados anteriores

0

2000

4000

6000

8000

1 2 3 4 5
Epoch

Tr
ai

ni
ng

 T
im

e 
[S

ec
on

ds
]

one three two

4



Fenômeno Observado

• Degradação de performance (aumento do tempo por
época) ao adicionar novos workers.

5



Causa Técnica

• O treinamento distribuído síncrono exige que todos os
nós atualizem os pesos simultaneamente.

• A operação de AllReduce (soma de gradientes) trafega
dados pela rede a cada batch, assim, a latência de
comunicação superou o ganho do paralelismo

6



Custom Training Loop



Estratégia

• Utilização de um Custom Training Loop.

7



Técnica Aplicada

• Implementação de acumulação de gradientes.

• Sincronização a cada 4 batches.

8



Impacto no Desempenho

• Aumenta o batch size efetivo antes de disparar a
sincronização.

• Melhora a razão Computação/Comunicação, reduzindo o
tráfego de rede e destravando o escalonamento.

9



Reproducibilidade e Ambiente de Testes



Limitação do GNU Guix

• A base oficial distribui estritamente Software Livre.

• Incompatibilidade com drivers proprietários essenciais
(NVIDIA CUDA Toolkit e cuDNN).

10



Restrição de Infraestrutura

• Impossibilidade de adicionar canais não-oficiais (nonguix)
no ambiente PCAD.

11



Solução Adotada

• Uso de Python Virtual Environment (venv).

• Isolamento de versões via pip garante reprodutibilidade
sem violar restrições de licenciamento de drivers de GPU.

12



Hardware

Anteriormente estávamos utilizando máquinas da partição Tupi, por razões
de alta concorrência mudamos para a partição Poti.

• Hardware anterior: Intel(R) Core(TM) i9-14900KF e NVIDIA GeForce
RTX 4090

• Hardware UTILIZADO: Intel(R) Core(TM) i7-14700KF e NVIDIA
GeForce RTX 4070

Tivemos alguns problemas como a configuração da rede da poti4 e
quedas repentinas da poti2 que atrasaram os experimentos.

13



Projeto Experimental



Tipos de treinamento

Executamos dois tipos de treinamento:

• "sync" -> Sincronismo total com model.fit()

• "ctl" -> Sincronismo a cada 4 batches com Custom
Training Loop

14



Modelo

Escolhemos além do ResNet50 com ~25.6M parâmetros um
modelo menor: EfficientNetB0 com ~5.3M parâmetros.

15



Outros fatores

• Batch size: 32, 64, 100
• Quantidade de nodos: 1, 2 e 3

16



Replicações

• 2x2x3x3 = 36 configurações

• Cada uma foi replicada 5 vezes.

• Total de 180 execuções!

17



Resultados



Aglomerado final dos dados

ctl sync

32
64

100

1 2 3 1 2 3

0
50

100
150

0
50

100
150

0
50

100
150

Nodes

Tr
ai

ni
ng

 T
im

e 
[M

in
ut

es
]

EfficientNetB0 ResNet50

18



Resultados por batch

ctl sync

32 64 10
0 32 64 10

0

0

50

100

150

Batch Size

Tr
ai

ni
ng

 T
im

e 
[M

in
ut

es
]

EfficientNetB0 ResNet50

19



Resultados por número de nodos

ctl sync

1 2 3 1 2 3

0

50

100

150

Nodes

Tr
ai

ni
ng

 T
im

e 
[M

in
ut

es
]

EfficientNetB0 ResNet50

20



Modelagem



Nosso modelo linear

EfficientNetB0 ResNet50

ctl
sync

40 60 80 10
0 40 60 80 10

0

2500
5000
7500

2500
5000
7500

Batch Size

Tr
ai

ni
ng

 T
im

e 
[S

ec
on

ds
]

2 3

21



Nosso modelo quadrático

EfficientNetB0 ResNet50

ctl
sync

40 60 80 10
0 40 60 80 10

0

2500
5000
7500

2500
5000
7500

Batch Size

Tr
ai

ni
ng

 T
im

e 
[S

ec
on

ds
]

2 3

22



Conclusão



Conclusão

• O tamanho do modelo assim como a rede é um fator
crítico para o treino distribuído síncrono.

• Mesmo com uma rede de baixo throughput é possível
obter ganhos através de uma boa configuração do
ambiente e do modelo.

23



Trabalhos futuros

Prever o overhead de comunicação baseado no tamanho do
modelo e das condições da rede.

24



Perguntas?

25


	Recapitulação
	Custom Training Loop
	Reproducibilidade e Ambiente de Testes
	Projeto Experimental
	Resultados
	Modelagem
	Conclusão

