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Recapitulação



Mudanças desde a última etapa

• Focamos apenas no TensorFlow

• Adicionamos outro modelo menor (EfficientNetB0)

• Focamos em entender o tempo de treino e descartamos
métricas secundárias

• Mudamos o dataset para o TinyImageNet-200

• Mudamos o hardware (downgrade)
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Resultados anteriores
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Fenômeno Observado

• Degradação de performance (aumento do tempo por
época) ao adicionar novos workers.

5



Causa Técnica

• O treinamento distribuído síncrono exige que todos os
nós atualizem os pesos simultaneamente.

• A operação de AllReduce (soma de gradientes) trafega
dados pela rede a cada batch, assim, a latência de
comunicação superou o ganho do paralelismo
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Custom Training Loop



Estratégia

• Utilização de um Custom Training Loop.
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Técnica Aplicada

• Implementação de acumulação de gradientes.

• Sincronização a cada 4 batches.
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Impacto no Desempenho

• Aumenta o batch size efetivo antes de disparar a
sincronização.

• Melhora a razão Computação/Comunicação, reduzindo o
tráfego de rede e destravando o escalonamento.
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Reproducibilidade e Ambiente de Testes



Limitação do GNU Guix

• A base oficial distribui estritamente Software Livre.

• Incompatibilidade com drivers proprietários essenciais
(NVIDIA CUDA Toolkit e cuDNN).
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Restrição de Infraestrutura

• Impossibilidade de adicionar canais não-oficiais (nonguix)
no ambiente PCAD.
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Solução Adotada

• Uso de Python Virtual Environment (venv).

• Isolamento de versões via pip garante reprodutibilidade
sem violar restrições de licenciamento de drivers de GPU.

12



Hardware

Anteriormente estávamos utilizando máquinas da partição Tupi, por razões
de alta concorrência mudamos para a partição Poti.

• Hardware anterior: Intel(R) Core(TM) i9-14900KF e NVIDIA GeForce
RTX 4090

• Hardware UTILIZADO: Intel(R) Core(TM) i7-14700KF e NVIDIA
GeForce RTX 4070

Tivemos alguns problemas como a configuração da rede da poti4 e
quedas repentinas da poti2 que atrasaram os experimentos.
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Projeto Experimental



Tipos de treinamento

Executamos dois tipos de treinamento:

• "sync" -> Sincronismo total com model.fit()

• "ctl" -> Sincronismo a cada 4 batches com Custom
Training Loop
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Modelo

Escolhemos além do ResNet50 com ~25.6M parâmetros um
modelo menor: EfficientNetB0 com ~5.3M parâmetros.
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Outros fatores

• Batch size: 32, 64, 100
• Quantidade de nodos: 1, 2 e 3
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Replicações

• 2x2x3x3 = 36 configurações

• Cada uma foi replicada 5 vezes.

• Total de 180 execuções!
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Resultados



Aglomerado final dos dados
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Resultados por batch
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Resultados por número de nodos
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Modelagem



Nosso modelo linear
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Nosso modelo quadrático
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Conclusão



Conclusão

• O tamanho do modelo assim como a rede é um fator
crítico para o treino distribuído síncrono.

• Mesmo com uma rede de baixo throughput é possível
obter ganhos através de uma boa configuração do
ambiente e do modelo.
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Trabalhos futuros

Prever o overhead de comunicação baseado no tamanho do
modelo e das condições da rede.
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Perguntas?
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