
Performance Evaluation of Tensorflow Parallel Strategies for
Deep Learning Training on HPC Clusters

RAYANRADDATZDEMATOS, KENICHI BRUMATI, andMARCELOCARDOSOOLIVEIRA
GULART, Federal University of Rio Grande do Sul, Brazil

The growing complexity of Deep Learning models makes training on single devices difficult, requiring
distributed strategies like Data Parallelism. However, this approach creates critical synchronization challenges
between processing units. This work evaluates TensorFlow parallel strategies on an HPC cluster to analyze how
application factors contribute to time reduction. The study compares the standard synchronous method against
a proposed Custom Training Loop designed to reduce bottleneck by synchronizing gradients less frequently.
Experiments using ResNet50 and EfficientNetB0 models show that the Custom Training Loop significantly
lowers communication overhead compared to the standard approach. Additionally, results indicate that
increasing the batch size consistently improves performance. The authors conclude that correct configuration
allows for performance gains in distributed training, even on networks with lower throughput.

Additional Key Words and Phrases: Deep Learning, HPC, Parallel Training, Distributed Training

ACM Reference Format:
Rayan Raddatz de Matos, Kenichi Brumati, and Marcelo Cardoso Oliveira Gulart. 2025. Performance Evaluation
of Tensorflow Parallel Strategies for Deep Learning Training on HPC Clusters. 1, 1 (December 2025), 7 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION
In the last decade, Deep Learning has established itself as the state-of-the-art for solving com-
plex problems, such as computer vision and natural language processing. Given the progress in
algorithmic precision, there has been an exponential growth in the complexity of neural network
architectures and the volume of datasets. This scenario imposes a massive computational load,
making the training of robust models on a single processing unit an difficult task in terms of time
and resources.
To mitigate these challenges, distributed training has become a standard practice, with an

emphasis on the Data Parallelism strategy. In this approach, a complete replica of the model is
instantiated on each processing unit, and the global dataset is partitioned into smaller, locally-
focused batches. Although effective, this technique introduces critical synchronization challenges,
as locally calculated gradients must be aggregated and communicated among all devices at every
training step, typically through All-Reduce operations.

Given this fact, in this work we decided to analyze data parallelism for AI training using Tensor-
Flow in a HPC cluster to investigate how the factors related to the application contribute to time
reduction in a parallel scenario.
Software and Data Availability. We endeavor to make our analysis reproducible for a better science.
We made available a companion material hosted in a public GitHub repository at https://github.com/
kenichi220/comp-sys-perf-analysis-final-work/tree/main. Our companion contains the source code of this article
and the software necessary to handle the created datasets. We also include instructions to run the
experiment and figures.

Authors’ address: Rayan Raddatz de Matos; Kenichi Brumati; Marcelo Cardoso Oliveira Gulart, Federal University of Rio
Grande do Sul, Campus do Vale - Sector 4, Porto Alegre, RS, 91501-970, Brazil.

2025. XXXX-XXXX/2025/12-ART $15.00
https://doi.org/0000001.0000001

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://doi.org/0000001.0000001
https://github.com/kenichi220/comp-sys-perf-analysis-final-work/tree/main
https://github.com/kenichi220/comp-sys-perf-analysis-final-work/tree/main
https://doi.org/0000001.0000001

2 Rayan Raddatz de Matos, Kenichi Brumati, and Marcelo Cardoso Oliveira Gulart

2 BACKGROUND AND EXPERIMENTAL CONTEXT
2.1 Background
TensorFlow is a machine learning system that operates at a large scale and in heterogeneous [1]. It
uses dataflow graphs to represent the computation, shared state, and the operations that alter this
state.
This architecture maps the nodes of a dataflow graph onto many machines within a cluster

and, within a machine, onto multiple computational devices (multicore CPUs, GPUs, and TPUs).
This offers flexibility to the developer to experiment with new optimizations and training algo-
rithms, supporting a variety of applications focused on deep neural networks. When it comes to
distributed training, TensorFlow offers different strategies with the tf.distribute.Strategy API.
The TensorFlow documentations adverts that "For synchronous training on many GPUs onmulti-
ple workers, use the tf.distribute.MultiWorkerMirroredStrategy with the Keras Model.fit or a custom
training loop."[4]. Meaning for a distributed training across different nodes in a cluster there is two
options: Using the MultiWorkerMirroredStrategy with the model.fit or creating a Custom Training
Loop by yourself.

2.2 Experimental Context
In High-Performance Computing (HPC) environments, a highly recommended practice to access to
shared computational resources is to mediate the access by workload management systems. In our
context Slurm (Simple Linux Utility for Resource Management) is utilized. Slurm is an open-source,
fault-tolerant, and highly scalable job scheduler, responsible for three main functions: Allocating
exclusive or non-exclusive access to resources/nodes for users, providing a framework to initiate,
execute, and monitor the work on the set of allocated nodes and managing a queue of pending jobs
[7].
Interaction with Slurm is typically performed through shell scripts written in the BASH lan-

guage. These scripts contain preprocessing directives that specify resource requirements, such
as the number of nodes, tasks per node, and execution time limit, enabling the automation and
reproducibility of computational experiments.

3 METHODS AND MATERIALS
3.1 Software Management and Reproducibility
Reproducibility of computational experiments is a critical challenge in computer science. To
mitigate software dependency issues, the use of the GNU Guix package manager was explored.
Guix implements the functional package management paradigmwhere each package is installed in a
unique and immutable directory in the store, derived from a cryptographic hash of its dependencies
[2].
However, the efficient training of deep neural networks using TensorFlow requires the use of

proprietary NVIDIA hardware acceleration libraries, which are not officially distributed in standard
Guix channels due to its strict Free Software policy.

Given this restriction, the strategy adopted in this work is the use of Python Virtual Environment
for environment management. Although a functional version of Guix exists on GitHub without the
proprietary libraries.

For managing the specific Deep Learning libraries, the python package manager pipwith version
25.3 was utilized. The exact version of the used library was frozen and documented using the pip
freeze command, generating a requirements file (reqs.txt) that enables the reconstruction of the
execution environment used in the experiments.

, Vol. 1, No. 1, Article . Publication date: December 2025.

Performance Evaluation of Tensorflow Parallel Strategies 3

3.2 Hardware and Software Configuration
The experiments were run using TensorFlow 2.15 as newer versions showed errors when trying to
train using more than one node with the .fit and MultiWorkerMirrodStrategy and python 3.11.2.
The NVIDIA drivers version was 550.54.15 and CUDA 12.4. We used up to three computational
nodes connected with a network of 1G, each node contains an Intel(R) Core(TM) i7-14700KF
processor at 3.40 GHz with 28 threads and 20 cores, 96 GB DDR5 RAM and NVIDIA GeForce RTX
4070 with 8GB memory accelerator.

3.3 Custom Training Loop
The expected execution from training with the MultiWorkerMirroredStrategy would show a
slower training time as we increased the number of nodes in the execution. However, we faced
a problem due to the connection while training that resulted in a higher training time as we
increased the number of nodes for big models with a lot of parameters such as ResNet50. This
problem happened because a synchronization is done for every batch computed by the model.fit()
training method, and as we had only an 1G network, this synchronization resulted in a bottleneck
that increased the training time. To mitigate this problem, we proposed a Custom Training Loop
that instead of synchronizing the parameters between nodes in every batch, only synchronizes at a
interval of batches, then resulting in a lower synchronization overhead. To this work we defined
this interval of batches as 4 batches.

3.4 Design of Experiments (DoE)
We selected two different Deep Learning models to train: ResNet50 [5] as a big model with ~25.6M
parameters and EfficientNetB0[6] as a small model with ~5.3M parameters. The two networks were
trained using the TinyImageNet-200, a subset of the ImageNet[3] containing 100000 downsized to
a 64×64 colored image divided among 200 classes. We created a full factorial for each model with
varying batch size, the number of nodes used and the type of the training. The levels for the batch
size factor were 32, 64 and 100, for the nodes we trained with 1, 2 and 3 nodes and for the type
of training we had "sync" that uses the model.fit method to train or "ctl" that uses our custom
training loop to train. This is a total of 2x3x3x2 different executions, each execution as replicated 5
times in a random order. Our output variable was the training time (full training time and time per
epoch).

4 RESULTS
Figure 1 show a full view of our results. The graph presents the mean training time in minutes as a
function of the number of nodes, faceted by type and batch size and with the color representing
the model. Each bar represents the mean for the five executions for each configuration. The black
transparent dots represents our observations. This allow us to see two main results: The first
one is that the inclusion of more then one node introduces the necessity of communication, and
together communication overhead. This overhead can be better seen with the smaller batches, as
the computation is faster and more communication is needed. We can also see that the ResNet50
shows a higher time then the EfficientNetB0 in this cases. This happens because all the parameters
needed to be synchronized after every batch, and the ResNet50 is almost 5 times bigger than
the EfficientNetB0. The second one is that the ctl showed a considerable smaller communication
overhead even for small batch sizes. The ctl showed OOM errors when running with the batch size
100 for training the EfficientNetB0 model.

, Vol. 1, No. 1, Article . Publication date: December 2025.

4 Rayan Raddatz de Matos, Kenichi Brumati, and Marcelo Cardoso Oliveira Gulart

After the communication overhead introduce by the inclusion of a second node, adding more
nodes seemed to decrease the training time. We suppose that with enough nodes, the time gained
by computing can overcome the overhead and be better then running it in one machine.

ctl sync

32
64

100

1 2 3 1 2 3

0
50

100
150

0
50

100
150

0
50

100
150

Nodes

Tr
ai

ni
ng

 T
im

e
[M

in
ut

es
]

EfficientNetB0 ResNet50

Fig. 1. Mean of experimental results.

4.1 The impact of node number and batch size
Figure 2 shows the mean training time grouped by node count. This enable us to see that in fact the
increase of more then two machines results in a lower training time even though this gain is small.
Figure 3 shows also an interesting result, we can see that increase of the batch size consistently
show performance gains, but also decrease the variance. This means that conforms the batch size
grows the training time is almost the same despite the node count.

4.2 Modeling a linear model
We propose a linear model to extrapolate our results and predict the training time. As the training
time is almost constant for one node, we decided to just create the model based on the parallel
executions, meaning that executions with more then one node were used to the model creation.
For each combination of model and type we created a different model.

Figure 4 and 5 show a plot of our two proposed models based on the nodes count and the batch
size. In the first model the batch size as a quadratic coefficient, represent the impact viewed in
Figure 3. The second show a linear model

5 CONCLUSION
We could conclude that the network and the model size have a huge importance in the distributed
training, but that even with a network with a low throughput, it is possible to gain performance
when training by correctly configuring the environment and model parameters. As future work we
intend to deep investigate the impact of the network and the model size in the distributed training.

, Vol. 1, No. 1, Article . Publication date: December 2025.

Performance Evaluation of Tensorflow Parallel Strategies 5

ctl sync

1 2 3 1 2 3

0

50

100

150

Nodes

Tr
ai

ni
ng

 T
im

e
[M

in
ut

es
]

EfficientNetB0 ResNet50

Fig. 2. Mean of experimental results grouped by node count.

ctl sync

32 64 10
0 32 64 10

0

0

50

100

150

Batch Size

Tr
ai

ni
ng

 T
im

e
[M

in
ut

es
]

EfficientNetB0 ResNet50

Fig. 3. Mean of experimental results grouped by batch size.

ACKNOWLEDGEMENTS
We would like to express our gratitude to Professor Dr. Lucas Mello Schnorr for his guidance and
the valuable insights shared regarding performance analysis. We also would like to thank the PCAD
at INF/UFRGS for making infrastructure and hardware used in the experiments available.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow:

, Vol. 1, No. 1, Article . Publication date: December 2025.

6 Rayan Raddatz de Matos, Kenichi Brumati, and Marcelo Cardoso Oliveira Gulart

EfficientNetB0 ResNet50

ctl
sync

40 60 80 10
0 40 60 80 10

0

2500
5000
7500

2500
5000
7500

Batch Size

Tr
ai

ni
ng

 T
im

e
[S

ec
on

ds
]

2 3

Fig. 4. Quadratic model

EfficientNetB0 ResNet50

ctl
sync

40 60 80 10
0 40 60 80 10

0

2500
5000
7500

2500
5000
7500

Batch Size

Tr
ai

ni
ng

 T
im

e
[S

ec
on

ds
]

2 3

Fig. 5. Linear Model

A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’16). USENIX Association.

[2] Ludovic Courtès. 2013. Functional Package Management with Guix. In Proceedings of the 6th European Lisp Symposium
(ELS). 15–28. https://arxiv.org/abs/1305.4584

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition. Ieee, 248–255.

[4] TensorFlow Documentation. 2023. Distributed training with Keras. https://www.tensorflow.org/tutorials/distribute/
keras. Accessed: 2025-11-30.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual Learning for Image Recognition. CoRR
abs/1512.03385 (2015). arXiv:1512.03385 http://arxiv.org/abs/1512.03385

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://arxiv.org/abs/1305.4584
https://www.tensorflow.org/tutorials/distribute/keras
https://www.tensorflow.org/tutorials/distribute/keras
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

Performance Evaluation of Tensorflow Parallel Strategies 7

[6] Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. CoRR
abs/1905.11946 (2019). arXiv:1905.11946 http://arxiv.org/abs/1905.11946

[7] Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux Utility for Resource Management. In Job
Scheduling Strategies for Parallel Processing. Springer, 44–60. https://doi.org/10.1007/10968987_3

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://doi.org/10.1007/10968987_3

	Abstract
	1 Introduction
	2 Background and Experimental Context
	2.1 Background
	2.2 Experimental Context

	3 Methods and Materials
	3.1 Software Management and Reproducibility
	3.2 Hardware and Software Configuration
	3.3 Custom Training Loop
	3.4 Design of Experiments (DoE)

	4 Results
	4.1 The impact of node number and batch size
	4.2 Modeling a linear model

	5 Conclusion
	References

