Português English
Contato
Publicado em: 01/10/2015

Inscrições para o curso Introduction to Nonlinear Simulators

O Programa de Pós-Graduação em Computação da UFRGS está promovendo o curso Tópicos Especiais em Computação - Introduction to Nonlinear Simulator, que acontecerá em outubro, nos dias 13, 14, 15, 20, 21 e 22, no Instituto de Informática da UFRGS, Campus do Vale, Setor 4, prédio 67, sala 108. As inscrições estão abertas e podem ser feitas pelo e-mail: ppgc@inf.ufrgs.br

O Programa de Pós-Graduação em Computação da UFRGS está promovendo o curso Tópicos Especiais em Computação – Introduction to Nonlinear Simulator, que acontecerá em outubro, nos dias 13, 14, 15, 20, 21 e 22, no Instituto de Informática da UFRGS, Campus do Vale, Setor 4, prédio 67, sala 108. As inscrições estão abertas e podem ser feitas pelo e-mail: ppgc@inf.ufrgs.br

O curso é voltado para estudantes de pós-graduação em Computação, Matemática, Física, Engenharia, Geologia e Hidrogeologia. Todas as aulas serão ministradas em inglês.

O professor convidado para ministrar as aulas é geoquímico Profº Dr. Anthony Park, da San Diego State University (EUA).

Para participar do curso é necessário ter conhecimento em pelo menos um dos três tópicos a seguir:
– Desenvolvimento de software;
– Física, Química ou Cálculo avançado;
– Métodos numéricos ou métodos computacionais.

Os alunos de pós-graduação de outras unidades e Universidades podem se inscrever como alunos especiais. Envie mail para ppgc@inf.ufrgs.br e peça inscrição como Aluno Especial na disciplina de código CMP591.

Para saber informações detalhadas sobre o plano de ensino do curso envie e-mail para a Profa. Mara Abel: marabel@inf.ufrgs.br

Mais informações:

ANTHONY PARK has a doctorate in theoretical geochemistry. Field of Study: Theoretical eochemistry, applied computational geochemistry. Development and application of computational simulators employing fundamental basic sciences; nonlinear dynamics; use of information technology to maximize effectiveness and efficiency of simulations; applications to environmental, petroleum exploration/production, and other geotechnical problems. Although he is an Associate professor of San Diego State University (CA, US), Tony has develop his carrier in the petroleum industry of US and Europe and he is a highly recognized consultant in reservoir and basin simulation for many of the larger petroleum companies in the world.

OBJETIVOS:

In a nonlinear system two or more variables are linked through two or more processes: they are inter-dependent on each other, such that any change imposed on a process or a variable also affects the other processes and variables. They are also called coupled systems, and include chaotic, periodic, and oscilliatory systems. Real-world examples include fluid flow (laminar vs. turbulent), weather prediction (storms), chemical reactions (oscillators), and even financial systems (stock market).

Nonlinear dynamics simulators typically model how these systems evolve in time. A unique properties of these models is that the end results are not predictable at the beginning, and they also depend on the initial (starting) system configurations. These simulators are highly specialized and require close collaborations between the disciplinary specialists and software developers. However, they are also characterized by a set of common principles on design and methods.

This couse will focus on the principles of simulator development, and will not address the mathematics governing the physical and chemical processes. Instead, the focus will be on how to evaluate the physical and chemical systems to be modeled, and to design a simulator for the problem provided. Examples from chemical, engineering, and in particular geological disciplines will be reviewed. In particular, geological sciences provides us with a large variety of nonlinear processes that require the considerations of heat and fluid flow, stresses, and chemical reactions. One of these systems, of modeling what happens to buried sediments, will be used to demonstrate the design of a simulator.

PROGRAMA:
1. Introduction: definition of a nonlinear system
2. Difference between evolutionary and steady-state equations
3. Computational approach: numerical methods
4. Space and time: discretization
5. Self-consistent systems
6. Simulator: evaluating the problem
7. Information: flow of data and priority of processes
8. Simulator design: loops and iterations
9. Visualization: working with multidimensional data

AVALIAÇÃO:
Participação e exercícios de projeto conceitual de um simulador.