Fundamentos Matemáticos para Processamento Gráfico
Professor responsável: Cláudio Rosito Jung
CARGA HORÁRIA TOTAL: 60 horas/aula
CRÉDITOS: 4
SEMESTRE: 2017/1
SÚMULA
A disciplina abrange os seguintes tópicos: resolução de sistemas lineares, condicionamento de matrizes, autovalores e autovetores, decomposição e valores singulares. Solução aproximada de equações não-lineares. Transformada de Fourier nos domínios contínuo e discreto. Solução numérica de equações diferenciais ordinárias e parciais.
OBJETIVOS
Ao final da disciplina espera-se que o aluno seja capaz de manipular com ferramentas matemáticas para processamento gráfico (Computação Gráfica, Processamento de Imagens e Visão Computacional), e identificar em problemas da área quais ferramentas são adequadas para sua solução.
PROGRAMA
CRITÉRIOS DE AVALIAÇÃO
A avaliação será feita a partir de duas notas de provas escritas (NP1 e NP2), e da nota de um trabalho final prático (NT) a ser entregue e apresentado em aula. O aluno terá a possibilidade de recuperar apenas uma das duas provas, a sua escolha, e terá o mesmo peso da prova a ser substituída. A prova de recuperação versará sobre o conteúdo total do semestre, independente da prova a ser recuperada. A nota final (NF) será obtida considerando a seguinte ponderação:
NF = 0,3 * NP1 + 0,4 * NP2 + 0,3 * NT
O conceito final será obtido da seguinte forma:
Se 9,0 <= NF –> A
Se 7,5 <= NF < 9,0 —> B
Se 6,0 <= NF < 7,5 —> C
Se NF < 6,0 —> D
Independentemente de NF, o aluno ficará com conceito FF se não
alcançar a frequência mínima (75%).
BIBLIOGRAFIA